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1 Notations and Natural Units 
 
 

1.1 Notations and Conventions 
REFERENCES: 

References of the form “5.3” refer to sections in this very 

document. 

References of the form “(>5.3.1)” refer to sections in the script 

called “Quantum Field Theory Background Calculations”, where 

additional information and step-to-step calculations are 

provided, when they are omitted here for better overview. 

BASIC NOTATIONS: 

NATURAL UNITS: 

Natural units are introduced in 1.2 and then used throughout the 

script. Also, we always use 𝑒 as the elementary charge, such that 

𝑒 > 0 and the electron’s charge is −𝑒. 

FEYNMAN SLASH NOTATION: 

Due to limitations of Microsoft Word, the Feynman slash notation 

will be denoted in this script with a horizontal bar: 

𝑝 ≔ 𝛾𝜇𝑝
𝜇 . 

3- AND 4-VECTORS: 

A 3-vector is denoted with a little arrow, 𝑝, a 4-vector without. 

The scalar product of 3-vectors is given without a dot, �⃗�𝑝, of 4-

vectors with a dot, 𝑥 ⋅ 𝑝. We will use the metric 

𝜂𝜇𝜈 = diag(1,−1,−1,−1). 

MULTIDIMENSIONAL INTEGRALS: 

For the differentials in multidimensional integrals, we will note 

down 𝑑𝑛𝑝 for whatever 𝑛. For example, will we not use 𝑑3𝑝 (with 

an arrow).  

COMMUTATORS, ANTICOMMUTATORS, POISSON BRACKETS: 

Usually, [𝐴, 𝐵] is the commutator and {𝐴, 𝐵} the anticommutator. 

If not, it is emphasized explicitly. 

CONJUGATE SPINORS: 

As usual, we denote �̅� ≔ 𝑢†𝛾0, if 𝑢 is a spinor. 

DERIVATIVE TO THE LEFT: 

We define the 4-derivative with a little arrow to the left as 

𝜓�⃖�𝜇 ≔ 𝜕𝜇𝜓. 

This notation is handy, when we want to make use of the 

Feynman slash notation for derivatives acting on spinors 𝜓, 

which don’t commute with 𝛾-matrices: 

𝜓�⃖� = 𝜕𝜇𝜓𝛾
𝜇 ≠ 𝜕𝜓. 

Similarly, we use the notation 

𝑔𝜕𝜇𝑓 ≔ 𝑔𝜕𝜇𝑓 − 𝑓𝜕𝜇𝑔    ⟺      𝜕𝜇 ≔ 𝜕𝜇 − �⃖�𝜇 . 

SPECIAL NOTATIONS USED IN THIS DOCUMENT: 

In 4.2, we introduce 

𝑑𝑝 ≔
𝑑4𝑝

(2𝜋)3
𝛿(𝑝2 −𝑚2)𝜃(𝑝0) =

𝑑3𝑝

(2𝜋)32𝜔𝑝
, 

where 𝜔𝑝
2 ≔ 𝑚2 + 𝑝2. 

In 4.4, we introduce 

𝑑𝑛�̅� ≔
𝑑𝑛𝑝

(2𝜋)𝑛
. 

Both notations are used also in later sections without defining 

them again. 

CONVENTION OF FOURIER TRANSFORMATION: 

We use the convention 

𝑓(�⃗�) = ∫𝑑3�̅� 𝑓(𝑝)𝑒𝑖�⃗�𝑥 ,          𝑓(𝑝) = ∫𝑑3𝑥 𝑓(�⃗�)𝑒−𝑖�⃗�𝑥. 

From this follows that 

∫𝑑3𝑥 𝑒−𝑖�⃗�𝑥 = (2𝜋)3𝛿(𝑝), 

with a prefactor of (2𝜋)3. See also the footnote in (>4.4.2). 

 
 
 
 

1.2 Natural Units 
We will use natural units, which is usually said to mean ℏ = 𝑐 =

𝜀0 = 1. More rigorously, one may think of natural units as follows: 

If you have a mass �̃� in SI units, it has the value 𝑚 in natural units, 

where �̃� = 𝑚/𝑐2. Obviously, 𝑚 has the dimension of energy. In 

the same way we threat other quantities, for example 

mass:                 �̃� = 𝑚 𝑐2,⁄                  [𝑚] = GeV,   

velocity:            �̃� = 𝑣𝑐,                       [𝑣] = 1,         

length:               �̃� = 𝐿ℏ𝑐,                    [𝐿] = GeV−1,

time:                  �̃� = 𝑡ℏ,                       [𝑡] = GeV−1,

electric field:   �̃⃗⃗� = �⃗⃗� √𝜀0(ℏ𝑐)
3,⁄     [�⃗⃗�] = GeV2,

magnetic field: �̃⃗⃗� = �⃗⃗� √𝜀0𝑐
2(ℏ𝑐)3,⁄ [�⃗⃗�] = GeV2.

 

The elementary charge in SI units �̃� is evaluated from the charge 

𝑒 in natural units by 

�̃� = 𝑒√𝜀0ℏ𝑐     ⟺      𝑒 = �̃� √𝜀0ℏ𝑐⁄ = √4𝜋𝛼, 

where 𝛼 is the fine-structure constant. The space-time four-

vector reads 

�̃�𝜇 = (𝑐�̃�, �̃⃗�) = ℏ𝑐(𝑡, �⃗�) = ℏ𝑐𝑥𝜇 ,     𝜕𝜇 = (ℏ𝑐)−1𝜕𝜇 . 

The Klein-Gordon equation becomes 

(𝜕𝜇𝜕
𝜇 + (

�̃�𝑐2

ℏ𝑐
)

2

)𝜓(�̃�) =
1

(ℏ𝑐)2
(𝜕𝜇𝜕

𝜇 +𝑚2)𝜓(𝑥) = 0, 

similar to the Dirac equation: 

(𝑖𝜕 −
�̃�𝑐2

ℏ𝑐
)𝜓(�̃�) =

1

ℏ𝑐
(𝑖𝜕 − 𝑚)𝜓(�̃�) = 0. 



2 Symmetries and Group Theory 
 

2.1 Symmetry Transformations and Lie Algebra 
UNITARY OPERATORS: 

A transformation 𝒯 is represented by a unitary operator 𝑈(𝒯). 

For a particular system, such transformation is a symmetry, if for 

all states 𝜓𝑛 and all corresponding transformed states 𝜓𝑛
′ = 𝑈𝜓𝑛 

holds that 
|〈𝜓𝑛|𝜓𝑛〉|

2 = |〈𝜓𝑛
′ |𝜓𝑛

′ 〉|2. 

Unitary operators obey 

⟨𝑈𝜙|𝑈𝜓〉 = ⟨𝜙|𝜓〉     ⟺      𝑈† = 𝑈−1, 

where the adjoint of an operator 𝑈† is defined as 

⟨𝜙|𝑈†𝜓〉 = ⟨𝑈𝜙|𝜓〉. 

SYMMETRY TRANSFORMATION FORM A GROUP: 

Symmetry transformation form a group; if 𝒯1 and 𝒯2 are symmetry 

transformations, so is 𝒯2𝒯1. Also, there is an inverse 𝒯−1 with 

𝒯𝒯−1 = 1. Similarly, the corresponding unitary operators obey 

𝑈(𝒯2)𝑈(𝒯1) = 𝑈(𝒯2𝒯1). 
Setting 𝒯2 = 1 or 𝒯2 = 𝒯1

−1 immediately yields 

𝑈(1) = 1,     𝑈(𝒯−1) = 𝑈−1(𝒯). 

THE LIE ALGEBRA: 

Connected Lie groups are groups of transformations 𝒯(𝜃) 

described by a finite set of real continuous parameters 𝜃 = {𝜃𝑎}. 

For some function ℎ, It should hold that 

𝒯(𝜃′)𝒯(𝜃) = 𝒯(ℎ(𝜃′, 𝜃)). 

Let 𝒯(0) = 1. This yields 

ℎ𝑎(𝜃, 0) = ℎ𝑎(0, 𝜃) = 𝜃𝑎,     ℎ = {ℎ𝑎}, 

and from this follows that the expansion of ℎ𝑎  takes the form 

ℎ𝑎(𝜃′, 𝜃) = 𝜃𝑎 + 𝜃′𝑎 + ℎ𝑎𝑏𝑐𝜃𝑏𝜃′𝑐 + 𝒪(𝜃3). 

The general expansion for the unitary operators is given by 

𝑈(𝒯(𝜃)) = 1 + 𝑖𝜃𝑎𝑡𝑎 +
1

2
𝜃𝑎𝜃𝑏𝑡𝑎𝑏 + 𝒪(𝜃3),  

where 𝑡𝑎 is Hermitian and  𝑡𝑎𝑏 = 𝑡𝑏𝑎 (>2.1.1). Using this 

expansion and compare the expansion coefficients of the 

equation 𝑈(𝒯(𝜃′))𝑈(𝒯(𝜃)) = 𝑈 (𝒯(ℎ(𝜃′, 𝜃))) yields (>2.1.2) 

𝑡𝑎𝑏 = −𝑡𝑎𝑡𝑏 − 𝑖ℎ𝑎𝑏𝑐𝑡𝑐. 

From this equation and the simple symmetry 𝑡𝑎𝑏 = 𝑡𝑏𝑎 follows 

(>2.1.3) 

[𝑡𝑎, 𝑡𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑡𝑐,          𝑓𝑎𝑏𝑐 ≔ ℎ𝑏𝑎𝑐 − ℎ𝑎𝑏𝑐 ∈ ℝ. 

This is the Lie algebra. 𝑡𝑎 are called generators, 𝑓𝑎𝑏𝑐  are called 

structure constants. 

THE JACOBI IDENTITY: 

From the general Jacobi identity of commutators, we find the 

Jacobi identity for the structure constants (>2.1.4): 

𝑓𝑏𝑐𝑑𝑓𝑑𝑎𝑒 + 𝑓𝑐𝑎𝑑𝑓𝑑𝑏𝑒 + 𝑓𝑎𝑏𝑑𝑓𝑑𝑐𝑒 = 0. 

ABELIAN GROUPS: 

A group is called Abelian if 

ℎ𝑎(𝜃, 𝜃′) = 𝜃𝑎 + 𝜃′𝑎     ⟹      ℎ𝑎𝑏𝑐 = 0    ⟹      [𝑡𝑎, 𝑡𝑏] = 0. 

In this case, 

𝑈(𝒯(𝜃′ + 𝜃)) = 𝑈(𝒯(𝜃′))𝑈(𝒯(𝜃)) ⟹  𝑈(𝒯(𝑁𝜃′)) = 𝑈(𝒯(𝜃′))
𝑁

 

holds and thus by substituting 𝜃′ = 𝜃/𝑁 

𝑈(𝒯(𝜃)) = 𝑈(𝒯(𝜃 𝑁⁄ ))
𝑁
= (1 + 𝑖

𝜃𝑎

𝑁
𝑡𝑎)

𝑁

⟶
𝑁→∞

exp 𝑖𝜃𝑎𝑡𝑎. 

 
 
 
 
 
 
 
 
 
 
 

2.2 The SU(N) Group 
DEFINITION: 

Consider the special unitary group SU(𝑁), which contains the set 

{𝑈 ∈ ℂ𝑁×𝑁|𝑈−1 = 𝑈†, det 𝑈 = 1}. 

For small 𝜃 we know from 2.1 that 

𝑈(𝜃) = 1 + 𝑖𝜃𝑎𝑡𝑎 + 𝒪(𝜃2). 

DIMENSIONALITY: 

Obviously, the generators 𝑡𝑎 are 𝑁 × 𝑁-matrices as well and in 

general we need 𝑁2 of them for a basis of all 𝑁 × 𝑁-matrices. 

However, 𝑈 are only those matrices with det 𝑈 = 1. By writing 

𝑈 = 𝑒𝑖𝜃
𝑎𝑡𝑎 we find (>2.2.1) 

det 𝑈 = det 𝑒𝑖𝜃
𝑎𝑡𝑎 = 𝑒𝑖𝜃

𝑎 Tr 𝑡𝑎 =
!
1    ⟹     Tr 𝑡𝑎 = 0. 

This condition reduces the number of independent generators by 

one and we are left with 𝑁2 − 1. This is the dimensionality of the 

group 𝑑(𝐺). That is, 𝑑(SU(𝑁)) = 𝑁2 − 1. 

NORMALIZATION: 

So far, the generators and structure constants are given only by 

the Lie algebra. A total factor for the Lie algebra can therefore be 

absorbed into 𝑓𝑎𝑏𝑐  and 𝑡𝑎. It is therefore convenient, to choose a 

normalization. A common convention in physics reads 

𝑓𝑎𝑐𝑑𝑓𝑏𝑐𝑑 = 𝑁𝛿𝑎𝑏 . 

This implies the following normalization condition for the 

generators (without proof): 

Tr 𝑡𝑎𝑡𝑏 = 𝑇(𝑅) 𝛿𝑎𝑏 ,          
𝑇(fund) = 1/2,

𝑇(adj) = 𝑁,       
 

where the index 𝑇(𝑅) is a constant that depends on the 

representation 𝑅. Using this normalization, we also find (>2.2.2) 

𝑓𝑎𝑏𝑐 = −
𝑖

𝑇(𝑅)
Tr([𝑡𝑎, 𝑡𝑏]𝑡𝑐). 

Note, that this implies that 𝑓𝑎𝑏𝑐  is totally antisymmetric. 

CASIMIR INVARIANTS: 

Any polynomial 𝐶 = 𝐴𝑎𝑏𝑡𝑎𝑡𝑏 + 𝐴𝑎𝑏𝑐𝑡𝑎𝑡𝑏𝑡𝑐 +⋯ that commutes 

with all generators ([𝐶, 𝑡𝑎] = 0 ∀𝑎) is a Casimir invariant. From 

Schur’s lemma follows that any Casimir invariant of an irreducible 

representation is proportional to the unit matrix 𝕀. For a SU(𝑁) 

group, 𝑡𝑎𝑡𝑎 is always a Casimir invariant (>2.2.3). Thus, we define 

the quadratic Casimir 𝐶2(𝑅) as 

𝑡𝑎𝑡𝑎 = 𝕀 𝐶2(𝑅),          
𝐶𝐹 ≔ 𝐶2(fund) = (𝑁

2 − 1)/2𝑁,

𝐶𝐴 ≔ 𝐶2(adj) = 𝑁,                         
 

which depends on the representation 𝑅 (>2.2.4). We have also the 

identity (>2.2.5) 

𝐶2(𝑅) ⋅ dim𝑅 = (𝑁
2 − 1) ⋅ 𝑇(𝑅). 

FUNDAMENTAL REPRESENTATION: 

A fundamental representation is a set of 𝑁2 − 1 linear 

independent matrices of smallest possible dimension. For SU(𝑁), 

the representation matrices need at least dimension 𝑁. For SU(3), 

usual we choose 

𝑡𝑎 = 𝜆𝑎 2⁄ , 

where 𝜆𝑎  are the Gell-Mann matrices. The fundamental 

representation also obeys the Fierz identity 

𝑡𝑖𝑗
𝑎 𝑡𝑘𝑙

𝑎 =
1

2
(𝛿𝑖𝑙𝛿𝑘𝑗 −

1

𝑁
𝛿𝑖𝑗𝛿𝑘𝑙). 

The index 𝑇(fund) and the quadratic Casimir 𝐶𝐹 ≔ 𝐶2(fund) of 

the fundamental representation are given above. 

ADJOINT REPRESENTATION: 

The matrices 𝑡𝑎 with components (𝑡𝑎)𝑐𝑑  of the adjoint 

representation is defined by 

(𝑡𝑎)𝑐𝑑 = −𝑖𝑓
𝑎𝑏𝑐 . 

Obviously, their dimension is 𝑁2 − 1 (larger than “necessary” to 

obey the Lie algebra, but that’s fine). Using the Jacobi identity 

from 2.1, one can show that they indeed fulfil the Lie algebra 

(>2.2.6). 

Note, that this implies that 

𝛿𝑏𝑑 𝐶𝐴 = (𝑡
𝑎)𝑏𝑐(𝑡

𝑎)𝑐𝑑 = 𝑓
𝑎𝑏𝑐𝑓𝑎𝑑𝑐  

 



2.3 Lorentz Transformation 
MINKOWSKI METRIC, LORENTZ TRANSFORMATION: 

Two coordinate systems 𝑥𝜇  and 𝑥′𝜇 of two inertial systems obey 

𝜂𝜇𝜈𝑑𝑥
′𝜇𝑑𝑥′𝜈 = 𝜂𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈     ⟺      𝜂𝜇𝜈
𝑑𝑥′𝜇

𝑑𝑥𝜌
𝑑𝑥′𝜈

𝑑𝑥𝜎
= 𝜂𝜌𝜎 , 

where 𝜂𝜇𝜈 = diag(1, 1, 1,−1). Any coordinate transformation 

satisfying these equation is linear, i.e. 

𝑥′𝜇 = Λ  𝜈
𝜇
𝑥𝜈 + 𝑎𝜇 , 

where the Λ  𝜈
𝜇

 must fulfill 

𝜂𝜇𝜈Λ  𝜌
𝜇
Λ  𝜎
𝜈 = 𝜂𝜌𝜎     ⟺      Λ  𝜎

𝜇
Λ  𝜏
𝜅 𝜂𝜎𝜏 = 𝜂𝜇𝜅 . 

Also, Λ         𝜈
−1 𝜇

= Λ𝜈
  𝜇

 and det Λ = 1 holds (>2.3.1).  

THE POINCARÉ GROUP: 

Two successive Lorentz transformations 

𝑥′′𝜇 = Λ̃  𝜈
𝜇
𝑥′𝜈 + �̃�𝜇 = Λ̃  𝜈

𝜇
Λ  𝜎
𝜈 𝑥𝜎 + Λ̃  𝜈

𝜇
𝑎𝜈 + �̃�𝜇  

is again a Lorentz transformation, since Λ̃  𝜈
𝜇
Λ  𝜎
𝜈  also fulfills  

                                𝜂𝜇𝜈(Λ̃  𝜅
𝜇
Λ  𝜌
𝜅 )(Λ̃  𝜏

𝜇
Λ  𝜎
𝜏 ) = 𝜂𝜌𝜎 .                 (>2.3.2) 

Let 𝑈(Λ, 𝑎) be the Lorentz transformation operator for physical 

states. According to the successive transformation above, 

𝑈(Λ̃, �̃�)𝑈(Λ, 𝑎) = 𝑈(Λ̃Λ, Λ̃𝑎 + �̃�) 

holds. The identity and inverse transformations read 

𝕀 = 𝑈(1, 0),     𝑈−1(Λ, 𝑎) = 𝑈(Λ−1, −Λ−1𝑎). 
 

2.4 The Poincaré Algebra 
INFINITESIMAL LORENTZ TRANSFORMATION: 

A transformation infinitesimally close to the identity is given by 

Λ  𝜈
𝜇
= 𝛿  𝜈

𝜇
+ 𝜔  𝜈

𝜇
,     𝑎𝜇 = 𝜖𝜇 ,     𝑈(Λ, 𝑎) = 𝑈(1 + 𝜔, 𝜖), 

with infinitesimal 𝜔  𝜈
𝜇
, 𝜖𝜇, where 𝜔𝜇𝜈 = −𝜔𝜈𝜇  (>2.4.1). The 

expansion of 𝑈 up to first order reads 

𝑈(1 + 𝜔, 𝜖) = 1 +
1

2
𝑖𝜔𝜇𝜈𝐽

𝜇𝜈 − 𝑖𝜖𝜇𝑃
𝜇 +⋯,  

where 𝐽𝜇𝜈  and 𝑃𝜇  are operators, analogous to 𝑡𝑎 in 2.1. They must 

have the properties 

𝐽†𝜇𝜈 = 𝐽𝜇𝜈 ,     𝑃†𝜇 = 𝑃𝜇 ,     𝐽𝜇𝜈 = −𝐽𝜈𝜇. 

LORENTZ TRANSFORMATION OF 𝑷𝝁 AND 𝑱𝝁𝝂: 

With new Λ, 𝑎, unrelated to 𝜔, 𝜖, consider 

𝑈(Λ, 𝑎)𝑈(1 + 𝜔, 𝜖)𝑈−1(Λ, 𝑎) = 𝑈(1 + Λ𝜔Λ−1, Λ𝜖 − Λ𝜔Λ−1𝑎). 

Expanding the 𝑈(1 + 𝜔, 𝜖) on the LHS and the RHS like above up 

to first order in the infinitesimal parameters and equating the 

coefficients of 𝜔 and 𝜖 yields the two equations (>2.4.2) 

          𝑈(Λ, 𝑎)𝐽𝜎𝜌𝑈−1(Λ, 𝑎) = Λ𝜇
  𝜎Λ𝜈

  𝜌(𝐽𝜇𝜈 − 𝑎𝜇𝑃𝜈 + 𝑎𝜈𝑃𝜇), 

          𝑈(Λ, 𝑎)𝑃𝜎𝑈−1(Λ, 𝑎) = Λ𝜇
  𝜎𝑃𝜇 . 

For homogenous Lorentz transformation (i.e. 𝑎 = 0) this means, 

that 𝐽𝜎𝜌 is a tensor and 𝑃𝜎  a vector. 

THE LIE ALGEBRA OF THE POINCARÉ GROUP: 

If one takes the Lorentz transformation of the two equations 

above again to be infinitesimal and compares again the 

coefficients of the 𝜔’s and the 𝜖’s, the result is the Lie algebra of 

Poincaré group (>2.4.3): 

          𝑖[𝐽𝜇𝜈, 𝐽𝜎𝜌] = 𝜂𝜈𝜎𝐽𝜇𝜌 − 𝜂𝜇𝜎𝐽𝜈𝜌 + 𝜂𝜇𝜌𝐽𝜈𝜎 − 𝜂𝜈𝜌𝐽𝜇𝜎 , 

          𝑖[𝑃𝜇 , 𝐽𝜎𝜌] = 𝜂𝜎𝜇𝑃𝜌 − 𝜂𝜌𝜇𝑃𝜎 , 

          𝑖[𝑃𝜇 , 𝑃𝜎] = 0. 

Using the definitions 𝐻 = 𝑃0, �⃗⃗� = (𝑃1, 𝑃2, 𝑃3), 𝐽 = (𝐽23, 𝐽31, 𝐽12), 

�⃗⃗⃗� = (𝐽01, 𝐽02, 𝐽03) yields the commutation relations 

     [𝐻, 𝐻] = [𝐻, 𝑃𝑖] = [𝐻, 𝐽𝑖] = [𝑃𝑖 , 𝑃𝑗] = 0,     [𝐻,𝐾𝑖] = 𝑖𝑃𝑖  

     [𝑃𝑖 , 𝐽𝑗] = 𝑖𝜖𝑖𝑗𝑘𝑃𝑘 ,     [𝑃𝑖 , 𝐾𝑗] = 𝑖𝐻𝛿𝑖𝑗 ,     [𝐽𝑖, 𝐽𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐽𝑘 , 

     [𝐽𝑖, 𝐾𝑗] = 𝑖𝜖𝑖𝑗𝑘𝐾𝑘 ,     [𝐾𝑖 , 𝐾𝑗] = −𝑖𝜖𝑖𝑗𝑘𝐽𝑘 . 

TRANSLATIONS AND ROTATIONS: 

Since translation are also additive, 

𝑈(1, 𝑎 + �̃�) = 𝑈(1, �̃�)𝑈(1, 𝑎), 

just as for the Abelian groups in 2.1, one can write them as 

𝑈(1, 𝑎) = exp(−𝑖𝑎𝜇𝑃
𝜇). 

The same holds for rotations 𝑅(�⃗�): 

𝑈(𝑅(�⃗�), 0) = exp(𝑖𝐽�⃗�) 



3 Classical Field Theory 
 

3.1 Lagrangian Densities and Euler-Lagrange Equations 
THE EULER-LAGRANGE EQUATIONS: 

The dynamics of fields can be deduced by the variational principle 

applied to an action functional 

𝑆(Ω) = ∫𝑑4𝑥 ℒ(𝜙𝑎, 𝜕𝜇𝜙𝑎)
Ω

, 

where in general Ω is a subset of Minkowski spacetime ℳ, but 

typically we have Ω = ℳ. According to the principle of minimal 

action, 𝑆 should be stationary for small variations of the fields 

𝜙𝑎 → 𝜙𝑎 + 𝛿𝜙𝑎 (assuming that the variations vanish at the 

boundary 𝜕Ω). With these ingredients, we find (>3.1.1) 
𝜕ℒ

𝜕𝜙𝑎
− 𝜕𝜇

𝜕ℒ

𝜕(𝜕𝜇𝜙𝑎)
= 0, 

the so-called Euler-Lagrange equations. 

LAGRANGIANS OF THE KLEIN-GORDON AND DIRAC FIELD: 

All well-known equations of motion can be encrypted in a 

Lagrangian ℒ. The following “Klein-Gordon Lagrangian” 

reproduces the Klein-Gordon equation (>3.1.2), 

ℒ =
1

2
(𝜕𝜇𝜙)2 −

𝑚2

2
𝜙2          ⟹           (☐ +𝑚2)𝜙 = 0. 

Note, that if the field 𝜙 is complex, we can treat 𝜙 and 𝜙∗ as 

independent field. In this case, we should choose the Lagrangian 

ℒ = |𝜕𝜇𝜙|2 −𝑚2|𝜙|2          ⟹           
  (☐+𝑚2)𝜙 = 0,

(☐+𝑚2)𝜙∗ = 0.
 

The following “Dirac Lagrangian” reproduces the Dirac equations: 

ℒ = �̅�(𝑖𝜕 − 𝑚)𝜓         ⟹          
(𝑖𝜕 − 𝑚)𝜓 = 0,

�̅�(𝑖�⃖� + 𝑚) = 0.
 

Here, we treated 𝜓 and �̅� ≔ 𝜓†𝛾0 as independent fields. 
 

3.2 Noether’s Theorem 
ASSUMPTIONS: 

Consider a Lagrangian ℒ containing fields 𝜙𝑎 that obey the Euler-

Lagrange equations. Further, let us consider a general 

infinitesimal transformation of the coordinates and the fields 

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇 ,          𝜙𝑎(𝑥) → 𝜙𝑎
′ (𝑥′) = 𝜙𝑎(𝑥) + 𝛿𝜙𝑎(𝑥), 

that does not change the action: 

𝛿𝑆 = ∫𝛿(𝑑4𝑥 ℒ)
Ω

= 0. 

COMPUTATIONS: 

We find (>3.2.1, >3.2.2, >3.2.3) 

            𝛿𝑑4𝑥 = 𝑑4𝑥 𝜕𝜇𝛿𝑥
𝜇 , 

            𝛿0𝜙𝑎(𝑥) ≔ 𝜙𝑎
′ (𝑥) − 𝜙𝑎(𝑥) = 𝛿𝜙𝑎(𝑥) − 𝛿𝑥

𝜇  𝜕𝜇𝜙𝑎(𝑥), 

            𝛿ℒ = 𝛿𝑥𝜇  𝜕𝜇ℒ + 𝜕𝜇 (
𝜕ℒ

𝜕(𝜕𝜇𝜙𝑎)
𝛿0𝜙). 

In the last expression, all fields and coordinates (also inside ℒ) are 

undashed. Using these results, we find (>3.2.4) 

𝛿(𝑑4𝑥 ℒ) = 𝑑4𝑥 𝜕𝜇 (−𝒯
𝜇𝜈  𝛿𝑥𝜈 +

𝜕ℒ

𝜕(𝜕𝜇𝜙𝑎)
𝛿𝜙𝑎). 

RESULTS: 

Let the transformation be described by some infinitesimal 

parameter 𝜃. Then we can write 𝛿𝑥𝜇 = 𝛿𝜃 ⋅ (𝛿𝑥𝜇/𝛿𝜃) and 𝛿𝜙𝑎 =

𝛿𝜃 ⋅ (𝛿𝜙𝑎 𝛿𝜃⁄ ) and get the conserved current in the form 

𝑗𝜇 = −𝒯𝜇𝜈
𝛿𝑥𝜈
𝛿𝜃

+
𝜕ℒ

𝜕(𝜕𝜇𝜙𝑎)

𝛿𝜙𝑎
𝛿𝜃
, 

where we introduced the energy-momentum tensor 

𝒯𝜇𝜈 =
𝜕ℒ

𝜕(𝜕𝜇𝜙𝑎)
𝜕𝜈𝜙𝑎 − 𝜂

𝜇𝜈ℒ. 

 

 
 
 
 
 

3.3 The Hamiltonian in Classical Field Theory 
HAMILTON FORMALISM: 

The Hamiltonian is connected to the Lagrangian via 

𝐻 = 𝑝�̇� − 𝐿,     where     𝑝 =
𝜕𝐿

𝜕�̇�
 

is the conjugate momentum. In a field theory, the fields play the 

role of the coordinates, so we may define a conjugate field 

momentum as 

Π𝑎 ≔
𝜕ℒ

𝜕�̇�𝑎
, 

where Π𝑎 ≡ Π𝑎(𝑥) is a field as well and �̇�𝑎 ≔ 𝜕0𝜙𝑎. Our Hamilton 

density then reads 

ℋ = Π𝑎�̇�𝑎 − ℒ. 

By this definition, 𝒯00 = ℋ: 

𝒯00 =
𝜕ℒ

𝜕(𝜕0𝜙𝑎)
𝜕0𝜙𝑎 − ℒ𝜂

00 = Π𝑎�̇�𝑎 − ℒ = ℋ. 

ENERGY AND MOMENTUM CONSERVATION: 

Energy and momentum are conserved, if the theory 

is invariant under time and space translations like 

       𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝛼𝜇     ⟹      𝛿𝑥𝜇 = 𝛼𝜇. 

From the figure it is obvious that 𝜙𝑎
′ (𝑥′) = 𝜙𝑎(𝑥) 

and therefore 𝛿𝜙𝑎 = 0. Thus, the four 

(𝜈 = 0, 1, 2, 3) conserved currents read 

(𝑗𝜇)𝜈 = −𝒯    𝜎
𝜇 𝛿𝛼

𝜎

𝛿𝛼𝜈
= −𝒯    𝜈

𝜇
    ⟹      𝜕𝜇𝒯

𝜇𝜈 = 0. 

For every 𝜈 we will have a conserved charge 𝑄𝜈  or 𝑃𝜈: 

𝑃𝜈 = 𝑄𝜈 = ∫𝑑3𝑥 𝒯0𝜈 ,          𝐻 = 𝑃0 = 𝑄0 = ∫𝑑3𝑥 ℋ. 

(minus signs don’t matter, �̇�𝜈 = 0 ⟺ −�̇�𝜈 = 0) 

THE HAMILTONIAN OF THE FREE KLEIN-GORDON FIELD: 

Thus, the Hamilton operator corresponding to the Klein-Gordon 

Lagrangian reads (>3.3.1) 

𝐻 = ∫𝑑3𝑥 ℋ =
1

2
∫𝑑3𝑥 (�̇�2 + (∇𝜙)2 +𝑚2𝜙2) ≥ 0. 

Apparently, by this approach, the negative energies, which caused 

trouble in the usual Klein-Gordon equation, are gone. 

THE HAMILTONIAN OF THE FREE DIRAC FIELD. 

Similarly, the Hamilton operator corresponding to the Dirac 

Lagrangian reads (>3.3.2) 

𝐻 = ∫𝑑3𝑥 𝑖�̅�𝛾0�̇� = ∫𝑑3𝑥 𝑖𝜓†�̇�. 

where it was used that for Noether’s theorem the fields must obey 

the equation of motion (𝑖𝜕 − 𝑚)𝜓 = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.4 Gauge Transformations 
ORIGIN FROM ELECTRODYNAMICS: 

We know from classical electrodynamics, that the 

electromagnetic field 𝐴𝜇 = (𝜑, 𝐴) is physically redundant in the 

sense that any gauge transformed field 

𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇𝜃 

yields the same physics as 𝐴𝜇. Studying quantum mechanics, one 

finds, however, that the Schrödinger 𝑖𝜕𝜓 𝜕𝑡⁄ = 𝐻𝜓 equation with 

the Hamiltonian  

𝐻 =
1

2𝑚
(𝑝 + 𝑞𝐴)

2
− 𝑞𝜑 =

1

2𝑚
(𝑝 + 𝑞𝐴)

2
− 𝑞𝜑, 

that couples a charged particle to an electromagnetic field is not 

invariant under such kind of gauge transformation. To fix this 

issue, one has to transform the also wave functions according to 

𝜓 → 𝑒𝑖𝑞𝜃𝜓. 

If we construct a Lagrangian density in classical field theory, 

containing fields 𝐴𝜇 and 𝜓, that is symmetric under such a gauge 

transformation, also the equations of motion will respect this 

symmetry, as desired.  

GENERALIZATION: 

In 2.2 we encountered so-called SU(𝑁) transformations 

𝑈 = 𝑒𝑖𝜃
𝑎𝑡𝑎 . 

In analogy to above, we employ such transformation to 𝜓 and 𝜙 

fields like 

𝜓 → 𝑈𝜓,          �̅� → �̅�𝑈†,          𝜙 → 𝑈𝜙,          𝜙† → 𝜙†𝑈†. 

(the gauge fields 𝐴𝜇 will transform differently, see 3.7). 

The case above is the special case of U(1) with only one generator 

𝑡𝑎 = 𝑞 and is no need for indices 𝑎. In this special case, the 

transformation of the gauge field is obviously 𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇𝜃. 

Note that if 𝑡𝑎 and thus 𝑈 is a matrix, the fields 𝜓,𝜙 need to be 

vectors in that space, to make sense of the transformation 𝜙 →

𝑈𝜙 (after all, 𝑈𝜙 plays the same role as 𝜙 and needs to have the 

same structure). 

LOCAL AND GLOBAL SYMMETRY TRANSFORMATIONS: 

If 𝜃𝑎 are real numbers, the corresponding transformation 𝑈 is 

called global. If 𝜃𝑎(𝑥) are functions of spacetime, 𝑈(𝑥) is called 

local. 
 

3.5 Global U(1) Symmetry yields Particle Currents 
(COMPLEX) KLEIN-GORDON FIELD: 

Let us investigate the U(1) symmetry transformation 

𝑈 = 𝑒𝑖𝑞𝜃 

in the context of the Klein-Gordon field. 𝑈 is a number, not a 

matrix, hence 𝜙 does not need to be a vector; however, 𝑈 is 

complex, thus 𝜙 → 𝑈𝜙 is complex as well. Using the Lagrangian 

for the complex Klein-Gordon field from 3.1, which is obviously 

invariant under the global transformation 𝑈 = 𝑒𝑖𝑞𝜃 , we find  

𝑗𝜇 = 𝑖𝑞(𝜙𝜕𝜇𝜙∗ − 𝜙∗𝜕𝜇𝜙). 

for Noether’s current (>3.5.1). 

DIRAC FIELD: 

Similarly, the same global transformation 𝑈 = 𝑒𝑖𝑞𝜃 yields in case 

of the Dirac Lagrangian (>3.5.2) 

𝑗𝜇 = 𝑞�̅�𝛾𝜇𝜓. 

 
 
 
 
 
 
 
 
 
 
 
 

3.6 Electrodynamics 
ELECTROMAGNETIC TENSOR AND COVARIANT DERIVATIVE: 

The four-potential is defined as 𝐴𝜇 = (𝜑, 𝐴). Let us then define 

the electromagnetic tensor  

𝐹𝜇𝜈 ≔ 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 =
1

𝑖𝑞
[𝐷𝜇 , 𝐷𝜈],          𝐷𝜇 ≔ 𝜕𝜇 + 𝑖𝑞𝐴𝜇, 

where 𝐷𝜇  is called covariant derivative.  

MAXWELL EQUATIONS: 

We know that the Maxwell equation can be given in the form 

𝜕𝜇𝐹
𝜇𝜈 = 𝑗𝜈 . 

The four-current 𝑗𝜇 = (𝜌, 𝑗) describes the electric charge 

distribution. Since 𝐹𝜇𝜈 = −𝐹𝜈𝜇 , this current is automatically 

conserved.  

THE QED LAGRANGIAN: 

The Lagrangian, that reproduces the Maxwell equations as its 

equations of motion reads (>3.6.1) 

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝑗𝜇𝐴
𝜇. 

It is a reasonable assumption, that we can use the currents from 

section 3.5 for this 𝑗𝜇 . Since we are primarily interested in 

electrons interacting with the electromagnetic field, let us use the 

fermion current 𝑗𝜇 = 𝑞�̅�𝛾𝜇𝜓. Then, the term 𝑗𝜇𝐴
𝜇 describes the 

interaction between fermions and photons. The full QED 

Lagrangian also needs to contain the description of free fermion, 

that is the Dirac Lagrangian. It then reads 

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝑖𝐷 −𝑚)𝜓, 

where we have absorbed the interaction term 𝑗𝜇𝐴
𝜇 into the 

covariant derivative 𝐷𝜇 . 

LOCAL U(1) GAUGE INVARIANCE: 

When we consider a local U(1) transformation 𝑈 = 𝑒𝑖𝑞𝜃(𝑥), we 

find that 𝐹𝜇𝜈  is trivially invariant and  

𝐷𝜇 → 𝑈𝐷𝜇𝑈†. 

Thus, the whole QED Lagrangian is invariant under local U(1) 

invariance (>3.6.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.7 Non-Abelian Gauge Theories 
SU(𝑵) GAUGE SYMMETRY AS A GUIDE: 

To describe more complex physics but only QED, we are looking 

for a more general Lagrangian, that is also invariant under SU(𝑁) 

transformations. That is, we recognize that gauge symmetry is a 

fundamental physical principle and let us guide by it to construct 

new Lagrangians to describe, for example, QCD. 

The starting point, from which SU(𝑁) gauge invariance is 

supposed to guide us, is the QED Lagrangian. Let us first focus on 

the Dirac term (including the interactions) and then on the kinetic 

term of the gauge fields. 

DIRAC PART: 

In 3.6 we found in the U(1) case that for the gauge field 

transformation 𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇𝜃, the covariant derivative 

transforms as  

𝐷𝜇 → 𝑈𝐷𝜇𝑈
†. 

If 𝐷𝜇  transforms like this also in the SU(𝑁) case, the Dirac part of 

the Lagrangian is trivially SU(𝑁) gauge invariant. In (3.7.1) we 

find that if we write the gauge field inside 𝐷𝜇  as a linear 

combination of SU(𝑁) generators, 

𝐴𝜇 = 𝐴𝜇
𝑎𝑡𝑎          ⟹           𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝜇

𝑎𝑡𝑎, 

where the coefficients transform as 

𝐴𝜇
𝑎 → 𝐴𝜇

𝑎 −
1

𝑔
𝜕𝜇𝜃

𝑎 + 𝑓𝑎𝑏𝑐𝐴𝜇
𝑏𝜃𝑐, 

that then we indeed get the desired transformation behaviour for 

𝐷𝜇 . Thereby, we now have to deal with 𝑁2 − 1 gauge fields 𝐴𝜇
𝑎(𝑥). 

THE EM-FIELD-TENSOR 𝑭𝝁𝝂: 

In analogy to 3.6, we use those 𝐷𝜇 ’s to construct a corresponding 

field-strength tensor by (>3.7.2) 

𝐹𝜇𝜈 =
1

𝑖𝑔
[𝐷𝜇 , 𝐷𝜈] = (𝜕𝜇𝐴𝜈

𝑎)𝑡𝑎 − (𝜕𝜈𝐴𝜇
𝑎)𝑡𝑎 − 𝑔𝐴𝜇

𝑎𝐴𝜈
𝑏𝑓𝑎𝑏𝑐𝑡𝑐 . 

If we write also 𝐹𝜇𝜈 = 𝐹𝜇𝜈
𝑎 𝑡𝑎, we get 

𝐹𝜇𝜈
𝑎 = 𝜕𝜇𝐴𝜈

𝑎 − 𝜕𝜈𝐴𝜇
𝑎 − 𝑔𝐴𝜇

𝑏𝐴𝜈
𝑐𝑓𝑎𝑏𝑐 . 

Obviously, 𝐹𝜇𝜈  now transforms according to 

𝐹𝜇𝜈 → 𝑈𝐹𝜇𝜈𝑈
†. 

Thus, also the old kinetic term −𝐹𝜇𝜈𝐹
𝜇𝜈/4 is not SU(𝑁) gauge 

invariant. 

YANG-MILLIS LAGRANGIAN: 

Not only is 𝐹𝜇𝜈𝐹
𝜇𝜈  not gauge invariant, it is also a matrix; however, 

the Lagrangian is a scalar. Thus, we need to repair this term. The 

Yang-Millis Lagrangian fixes these two issues: 

ℒ = −
1

2
Tr 𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝑖𝐷 − 𝑚)𝜓. 

It is obviously invariant under the local SU(𝑁) transformation 

discussed above and the kinetic term of the gauge fields is clearly 

a scalar. 

Using the normalization Tr 𝑡𝑎𝑡𝑏 = 𝛿𝑎𝑏/2 from 2.2, we can write 

the Yang-Millis Lagrangian also as 

ℒ = −
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎

𝜇𝜈
+ �̅�(𝑖𝐷 − 𝑚)𝜓, 

since Tr 𝐹𝜇𝜈𝐹
𝜇𝜈 = 𝐹𝜇𝜈

𝑎 𝐹𝑏
𝜇𝜈
Tr 𝑡𝑎𝑡𝑏 = 𝐹𝜇𝜈

𝑎 𝐹𝑎
𝜇𝜈
/2. 



4 Quantized Klein-Gordon Field 
 

4.1 Second Quantization in General 
CANONICAL QUANTIZATION: 

Classical Hamiltonian mechanics is described in terms of space 

coordinates 𝑞𝑖  and momenta 𝑝𝑖 . We have the Poisson bracket 

{𝑓, 𝑔} ≔
𝜕𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
−
𝜕𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑞𝑖
 

there (sum over 𝑖 is implied) and the corresponding relation 

{𝑞𝑖 , 𝑝𝑗} =
𝜕𝑞𝑖
𝜕𝑞𝑘

𝜕𝑝𝑗

𝜕𝑝𝑘
−
𝜕𝑞𝑖
𝜕𝑝𝑘

𝜕𝑝𝑗

𝜕𝑞𝑘
= 𝛿𝑖𝑘𝛿𝑗𝑘 − 0 = 𝛿𝑖𝑗 . 

And finally, we have a Hamilton function 𝐻(𝑞𝑖 , 𝑝𝑗).  

Now, the first quantization is to put hats on 𝑞𝑖  and 𝑝𝑖  and the 

Poisson bracket becomes the commutator: 
𝑞𝑖 , 𝑝𝑖                   →   �̂�𝑖 , �̂�𝑖 ,                

{𝑞𝑖 , 𝑝𝑗} = 𝛿𝑖𝑗    →   [�̂�𝑖 , �̂�𝑗] = 𝑖𝛿𝑖𝑗 ,

𝐻(𝑞𝑖 , 𝑝𝑗)          →   �̂�(�̂�𝑖 , �̂�𝑗).        

 

The most interesting thing is the sudden appearance of the 𝑖, 

which is needed to enable the operators to be Hermitian. 

By the way, there are actually more relations, namely that  

{𝑞𝑖 , 𝑞𝑗} = {𝑝𝑖 , 𝑝𝑗} = [�̂�𝑖 , �̂�𝑗] = [�̂�𝑖 , �̂�𝑗] = 0. 

CANONICAL QUANTIZATION FOR FIELDS: 

In complete analogy we go from classical field theory (where 

𝑞𝑖 =̂ 𝜙𝑎(𝑥), 𝑝𝑖 = Π𝑏(𝑥)) to quantum field theory. Let’s first take a 

look at the equal time Poisson bracket in classical field theory, 

{𝜙𝑎(�⃗�), Π𝑏(�⃗�)} = ∫𝑑
3𝑧 (

𝜕𝜙𝑎(�⃗�)

𝜕𝜙𝑐(𝑧)

𝜕Π𝑏(�⃗�)

𝜕Π𝑐(𝑧)
−
𝜕𝜙𝑎(�⃗�)

𝜕Π𝑐(𝑧)

𝜕Π𝑏(�⃗�)

𝜕𝜙𝑐(𝑧)
)

= ∫𝑑3𝑧 (𝛿𝑎𝑐𝛿𝑏𝑐𝛿(�⃗� − 𝑧)𝛿(�⃗� − 𝑧) − 0) = 𝛿𝑎𝑏𝛿(�⃗� − �⃗�), 

and now come up with the quantization: 

𝜙𝑎(𝑥), Π𝑏(𝑥)    →    �̂�𝑎(𝑥), Π̂𝑏(𝑥),  

{𝜙𝑎(�⃗�), Π𝑏(�⃗�)} = 𝛿𝑎𝑏𝛿(�⃗� − �⃗�) → [�̂�𝑎(�⃗�), Π̂𝑏(�⃗�)] = 𝑖𝛿𝑎𝑏𝛿(�⃗� − �⃗�), 

𝐻(𝜙, Π)    →    �̂�(�̂�, Π̂).  

And, of course, 

{𝜙𝑎(�⃗�), 𝜙𝑏(�⃗�)} = {Π𝑎(�⃗�), Π𝑏(�⃗�)} = [�̂�𝑎(�⃗�), �̂�𝑏(�⃗�)]

= [Π̂𝑎(�⃗�), Π̂𝑏(�⃗�)] = 0. 

Note that the two fields in all the Poisson brackets and 

commutators are understood to be evaluated at the same time 𝑡. 

In this script, we will always imply this by writing the arguments 

as three-vectors. From now on, we won’t write the hats on top of 

the fields 𝜙, Π; still, they are understood to be operators. 
 

4.2 Lorentz Invariance of Integral over 3-space 
When we integrate over the energy-momentum space 𝑑4𝑝, we 

often only want to integrate over the part of this space where 

𝑝2 = 𝑚2 ⟺ 𝑝0
2 = 𝑝2 +𝑚2 is obeyed. In those cases, we use the 

measure (>4.2.1) 

𝑑𝑝 ≔
𝑑4𝑝

(2𝜋)3
𝛿(𝑝2 −𝑚2)𝜃(𝑝0) =

𝑑3𝑝

(2𝜋)32𝜔𝑝
, 

where 

     𝜔𝑝 ≔ 𝑝2 +𝑚2. 

𝑑3𝑝 is not Lorentz invariant, however 𝑑4𝑝 is and so is 𝑝2. The 

𝜃(𝑝0) is Lorentz invariant under usual Lorentz transformation 

(not time inversion, but boosts, rotations). Thus, 𝑑𝑝 is Lorentz 

invariant (and hence also 𝑑3𝑝/𝜔𝑝) 
 

4.3 Recall Klein-Gordon Lagrangian and Hamiltonian 
Recall the real Klein-Gordon Lagrangian/Hamiltonian from 3.3: 

ℒ =
1

2
(𝜕𝜇𝜙)2 −

𝑚2

2
𝜙2,                          

𝐻 =
1

2
∫𝑑3𝑥 (�̇�2 + (∇𝜙)2 +𝑚2𝜙2). 

 

4.4 Quantization of the Real Klein-Gordon Field 
ANALOGY OF COUPLED HARMONICS OSCILLATORS (>4.4.1): 

DIAGONALIZING THE HAMILTONIAN: 

Let us consider first a plain QM Hamiltonian with operators 𝑞𝑖 , 𝑝𝑖  

�̂� =∑
𝑝𝑖
2

2𝑚
𝑖

+
𝑚

2
𝑞𝑖𝑄𝑖𝑗𝑞𝑗 ,     𝑄𝑖𝑗 = 𝑄𝑗𝑖 . 

Symmetric matrices 𝑄 can always be diagonlized by orthorgonal 

matrices 𝑂 with 𝑂𝑇𝑂 = 𝕀: 𝐷 = 𝑂𝑄𝑂𝑇 . We introduce 𝑞𝑖
′, 𝑝𝑖

′ as 

𝑞𝑖 = 𝑂𝑖𝑗𝑞𝑗
′ ,     𝑝𝑖 = 𝑂𝑖𝑗𝑝𝑗

′ . 

The reason, why we also transform the 𝑝𝑖 ’s is to maintain the 

commutation relation [𝑞𝑖
′, 𝑝𝑗

′] = [𝑞𝑖 , 𝑝𝑗] = 𝑖𝛿𝑖𝑗. If we write the 

Hamiltonian in terms of the dashed quantities, it is diagonalized: 

𝐻 =∑(
𝑝𝑖
′2

2𝑚
+
𝑚𝜔𝑖

2

2
𝑞𝑖
′2)

𝑖

. 

INTRODUCE LADDER OPERATORS: 

The next step is to introduce ladder operators 

𝑎𝑖 = √
𝑚𝜔𝑖
2
(𝑞𝑖

′ +
𝑖

𝑚𝜔𝑖
𝑝𝑖
′),     𝑎𝑖

† = √
𝑚𝜔𝑖
2
(𝑞𝑖

′ −
𝑖

𝑚𝜔𝑖
𝑝𝑖
′), 

where the prefactors are chosen to give the neat commutator 

[𝑎𝑖 , 𝑎𝑖
†] = 1. 

We can solve the two equations for 𝑞𝑖
′, 𝑝𝑖

′ and plug them into 𝐻: 

𝐻 =∑𝜔𝑖 (𝑎𝑖𝑎𝑖
† +

1

2
)

𝑖

. 

THE QUANTIZATION OF THE KLEIN-GORDON FIELD (>4.4.2): 

DIAGONALIZING THE HAMILTONIAN: 

In 3.3 we found the Klein-Gordon Hamiltonian. Let’s quantize it 

(upgrade fields to operators) and use Π = 𝜕ℒ 𝜕�̇�⁄ = �̇�: 

𝐻 =
1

2
∫𝑑3𝑥 (Π2(�⃗�) + (∇𝜙(�⃗�))

2
+𝑚2𝜙2(�⃗�)),     |𝜙|2 ≔ 𝜙†𝜙. 

To diagonalize it in analogy to above, we introduce 

𝜙(�⃗�) = ∫𝑑3�̅� 𝑒𝑖𝑥�⃗�𝜙(𝑝) ,     Π(�⃗�) = ∫𝑑3�̅� 𝑒𝑖𝑥�⃗�Π(𝑝),       

𝜙†(𝑝) = 𝜙(−𝑝),     Π†(𝑝) = Π(−𝑝),     𝑑𝑛�̅� ≔ 𝑑𝑛𝑝/(2𝜋)𝑛 

Obviously, 𝜙(𝑝), Π(𝑝) are not Hermitian (in contrast to 𝑞𝑖
′, 𝑝𝑖

′)! We 

find that 

[𝜙(𝑝), Π†(𝑝′)] = [𝜙†(𝑝), Π(𝑝′)] = (2𝜋)3𝑖𝛿(𝑝 − 𝑝′), 

where the † is needed here (𝑞𝑖
′, 𝑝𝑖

′ where Hermitian anyway). 

Writing 𝐻 in terms of 𝜙(𝑝), Π(𝑝), we find the diagonalized 

𝐻 =
1

2
∫𝑑3�̅� (Π2(𝑝) + 𝜔𝑝

2𝜙2(𝑝)),     𝜔𝑝
2 ≔ 𝑚2 + 𝑝2. 

INTRODUCE LADDER OPERATORS: 

Since 𝜙†(𝑝) = 𝜙(−𝑝) is not Hermitian, we cannot simply write 

𝜙(𝑝) ∼ (𝑎𝑝
† + 𝑎𝑝),     Π(𝑝) ∼ 𝑖(𝑎𝑝

† − 𝑎𝑝). 

What does work, however, is 

𝜙(𝑝) = (𝑒𝑖𝜔𝑝𝑡𝑎−𝑝
† + 𝑒−𝑖𝜔𝑝𝑡𝑎𝑝)/2𝜔𝑝,  

Π(𝑝) = 𝑖(𝑒𝑖𝜔𝑝𝑡𝑎−𝑝
† − 𝑒−𝑖𝜔𝑝𝑡𝑎𝑝) 2⁄ .      

From there, we find 

𝑎𝑝 = 𝑒
𝑖𝜔𝑝𝑡 (𝜔𝑝𝜙(𝑝) + 𝑖Π(𝑝)),      

𝑎−𝑝
† = 𝑒−𝑖𝜔𝑝𝑡 (𝜔𝑝𝜙(𝑝) − 𝑖Π(𝑝)), 

[𝑎𝑝, 𝑎𝑝′
† ] = (2𝜋)32𝜔𝑝𝛿(𝑝 − 𝑝

′),     [𝑎𝑝
† , 𝑎𝑝′

† ] = [𝑎𝑝, 𝑎𝑝′] = 0 

and the Hamiltonian 

𝐻 = ∫𝑑𝑝 𝜔𝑝 (𝑎𝑝
†𝑎𝑝 +𝜔𝑝𝛿(0)). 

The constant, infinite term ∼ 𝛿(0) is dropped, as we measure only 

differences in energy. Finally, we can solve for 𝜙(�⃗�), Π(�⃗�): 

𝜙(�⃗�) = 𝜙(𝑥) = ∫𝑑𝑝 (𝑒𝑖𝑝⋅𝑥𝑎𝑝
† + 𝑒−𝑖𝑝⋅𝑥𝑎𝑝),        

Π(�⃗�) = Π(𝑥) = ∫𝑑𝑝 𝑖𝜔𝑝(𝑒
𝑖𝑝⋅𝑥𝑎𝑝

† − 𝑒−𝑖𝑝⋅𝑥𝑎𝑝). 

Since 𝜙 is a scalar field and 𝑑𝑝 and 𝑒𝑖𝑝⋅𝑥  are Lorentz invariant, the 

ladder operators also need to be Lorentz invariant. 
 



4.5 The Four-Momentum Operator 
The energy-momentum tensor of the real Klein-Gordon field is 

𝒯𝜇𝜈 = (𝜕𝜇𝜙)(𝜕𝜈𝜙) − ℒ𝜂𝜇𝜈 . 

In 3.3 we saw that the conserved charges for invariance under 

time and space translation are given by 

𝑄𝜈 = ∫𝑑3𝑥 𝒯0𝜈 = ∫𝑑3𝑥 (Π (𝜕𝜈𝜙) − ℒ𝜂0𝜈). 

Plugging in our fields 𝜙, Π from the bottom of 4.4, yields (>4.5.1) 

𝑃𝜈 ≔ 𝑄𝜈 = ∫𝑑𝑝 𝑝𝜈  𝑎𝑝
†𝑎𝑝 . 

Note that for 𝜈 = 0 (𝑄0 = 𝐻) we already found that result in 4.4. 

We call 𝑃𝜈  the four-momentum operator.  
 

4.6 The Fock Space 
LADDER OPERATORS ON MOMENTUM EIGENSTATES: 

Consider an eigenstate of 𝑃𝜇  (from 4.5): 𝑃𝜇|𝑘〉 = 𝑘𝜇|𝑘〉. Using  

[𝑃𝜇 , 𝑎𝑝
†] = 𝑝𝜇𝑎𝑝

† ,     [𝑃𝜇 , 𝑎𝑝] = −𝑝
𝜇𝑎𝑝  

(>4.6.1) we find that also 𝑎𝑝
†|𝑘⟩ is an eigenstate of 𝑃𝜇: 

𝑃𝜇𝑎𝑝
†|𝑘⟩ = [𝑃𝜇 , 𝑎𝑝

†]|𝑘⟩ + 𝑎𝑝
†𝑃𝜇|𝑘〉 = 𝑝𝜇𝑎𝑝

†|𝑘⟩ + 𝑎𝑝
†𝑘𝜇|𝑘〉

= (𝑝𝜇 + 𝑘𝜇)𝑎𝑝
†|𝑘〉. 

Thus, the momentum of 𝑎𝑝
†|𝑘⟩ is about 𝑝𝜇  higher than of |𝑘〉. 

STARTING FROM THE VACUUM: 

We start now from the vacuum state |0⟩ with  

𝑎𝑝|0〉 = 0 

and create particles of certain momenta: 

𝑎𝑝
†|0〉 = |𝑝〉,     𝑎𝑝

†𝑎𝑝′
† |0〉 = |𝑝, 𝑝′⟩. 

Since [𝑎𝑝
† , 𝑎𝑝′

† ] = 0, we have |𝑝, 𝑝′〉 = |𝑝′, 𝑝〉, thus Bose symmetry. 

NORMALIZATION: 

Using |𝑝〉 = 𝑎𝑝
†|0〉 and their commutator we find (>4.6.2) 

⟨𝑝|𝑝′〉 = (2𝜋)32𝜔𝑝𝛿(𝑝 − 𝑝
′). 

FIELDS ACTING ON FOCK SPACE STATES: 

Now we see that 𝜙(𝑥) creates a particle at 𝑥 out of the vacuum: 

𝜙(𝑥)|0〉 = ∫𝑑𝑝 (𝑒𝑖𝑝⋅𝑥𝑎𝑝
† + 𝑒−𝑖𝑝⋅𝑥𝑎𝑝) |0⟩ = ∫𝑑𝑝 𝑒

𝑖𝑝⋅𝑥|𝑝⟩ = |𝑥〉. 

 

4.7 Complex Klein-Gordon Field (without Derivation) 
The complex Klein-Gordon Lagrangian reads 

ℒ = (𝜕𝜇𝜙)
∗
(𝜕𝜇𝜙) −𝑚2𝜙∗𝜙    ⟹      (☐ +𝑚2)𝜙 = 0. 

We can write 

𝜙(𝑥) = (𝜑1(𝑥) + 𝑖𝜑2(𝑥)) √2⁄ ,     𝜑𝑖 ∈ ℝ, 

where 𝜑𝑖  are independent real Klein-Gordon fields of the same 

mass, which is obvious when plugged into the Lagrangian: 

2ℒ = (𝜕𝜇𝜑1)
2
−𝑚2𝜑1

2 + (𝜕𝜇𝜑2)
2
−𝑚2𝜑2

2. 

We know from 4.4 that 

𝜑𝑖(𝑥) = ∫𝑑𝑝(𝑒
𝑖𝑝⋅𝑥𝑎𝑖𝑝

† + 𝑎𝑖𝑝𝑒
−𝑖𝑝⋅𝑥),          

⟹      𝜙(𝑥) = ∫𝑑𝑝 (𝑏𝑝
†𝑒𝑖𝑝⋅𝑥 + 𝑎𝑝𝑒

−𝑖𝑝⋅𝑥), 

where we defined 

𝑎𝑝 ≔ (𝑎1𝑝 + 𝑖𝑎2𝑝) √2⁄ ,     𝑏𝑝 ≔ (𝑎1𝑝 − 𝑖𝑎2𝑝) √2⁄ , 

[𝑎𝑝, 𝑎𝑝′
† ] = [𝑏𝑝, 𝑏𝑝′

† ] = (2𝜋)32𝜔𝑝𝛿(𝑝 − 𝑝
′). 

The only non-zero field commutators are now 

[𝜙(�⃗�), Π(�⃗�)] = [𝜙†(�⃗�), Π†(�⃗�)] = 𝑖𝛿(�⃗� − �⃗�), 

The four-momentum operator (see 4.5) then reads 

𝑃𝜇 = ∫𝑑𝑝 𝑝𝜇(𝑎𝑝
†𝑎𝑝 + 𝑏𝑝

†𝑏𝑝). 

From the U(1)-transformation conserved current from 3.5 we get 

the charge for particle number conservation 

𝑄 ∼ ∫𝑑𝑝 (𝑎𝑝
†𝑎𝑝 − 𝑏𝑝

†𝑏𝑝). 

Apparently, 𝑏𝑝
† (and thus also 𝜙(𝑥)) creates antiparticles, which 

are counted negative, 𝑎𝑝
† (and thus 𝜙†) creates particles. 

 
 

4.8 Causality and Propagators 
CAUSALITY: 

Spacelike distances, i.e. (𝑥 − 𝑦)2 < 0, are causally disconnected. 

Thus, fields at 𝑥 should not influence fields at 𝑦 if (𝑥 − 𝑦)2 < 0: 

Δ(𝑥 − 𝑦) ≔ [𝜙(𝑥), 𝜙(𝑦)] = 0,     if     (𝑥 − 𝑦)2 < 0. 

If we plug in the fields from 4.4, we find (>4.8.1) 

Δ(𝑧) = ∫𝑑𝑝 (𝑒−𝑖𝑝⋅𝑧 − 𝑒𝑖𝑝⋅𝑧), 

which is Lorentz invariant. For 𝑧0 = 0, 𝑧 is spacelike and Δ(𝑧) 

vanishes, as we see if we rotate 𝑝 → −𝑝 in one of the two terms. A 

Lorentz transformation can turn this spacelike 𝑧 = (0, 𝑧) only 

into other spacelike four-vectors 𝑧. Since Δ is Lorenz invariant, it 

therefore also vanishes for all other spacelike 𝑧. However, it can 

be non-zero for timelike 𝑧 ≥ 0.  

In the case of the complex fields from 4.7, we need 

Δ(𝑥 − 𝑦) ≔ [𝜙(𝑥), 𝜙†(𝑦)] = 0,     if     (𝑥 − 𝑦)2 < 0, 

whereas [𝜙(𝑥), 𝜙(𝑦)] = 0 ∀𝑥, 𝑦 anyway, which follows directly 

when plugging in the expansion in ladder operators. We still have 

the same Lorentz invariant Δ(𝑧) as above (>4.8.2, for a real scalar 

field 𝜙† = 𝜙, the particle is its own antiparticle).  

PROPAGATORS: 

Since the commutator [𝜙(𝑥), 𝜙†(𝑦)] is not an operator but just a 

function Δ(𝑥 − 𝑦), we can write 

[𝜙(𝑥), 𝜙†(𝑦)] = ⟨0|[𝜙(𝑥), 𝜙†(𝑦)]|0⟩

= ⟨0|𝜙(𝑥)𝜙†(𝑦)|0⟩ − ⟨0|𝜙†(𝑦)𝜙(𝑥)|0⟩. 

The first term describes a particle propagation from 𝑦 → 𝑥, the 

second an antiparticle propagation from 𝑥 → 𝑦. Note that they 

individually do violate causality, since they are not zero for 

(𝑥 − 𝑦)2 < 0, e.g. (>4.8.3) 

⟨0|𝜙(𝑥)𝜙†(𝑦)|0⟩ = ∫𝑑𝑝 𝑒−𝑖𝑝⋅(𝑥−𝑦). 

This is, what we call a propagator. 

FEYNMAN PROPAGATOR: 

We now define the time-ordered Feynman propagator as 

𝐷𝐹(𝑥 − 𝑦) ≔ ⟨0|𝒯𝜙(𝑥)𝜙†(𝑦)|0〉 ≔ {
⟨0|𝜙(𝑥)𝜙†(𝑦)|0⟩, 𝑥0 ≥ 𝑦0

⟨0|𝜙†(𝑦)𝜙(𝑥)|0⟩, 𝑦0 ≥ 𝑥0
, 

where 𝒯 implies that the field operators should be ordered with 

increasing time from right to left. It describes particle 

propagation forward in time and antiparticle propagation 

backward in time or the other way around, depending on whether 

𝑥0 ≥ 𝑦0 or 𝑦0 ≥ 𝑥0. 

From the integrals of the propagators Δ we can derive (>4.8.4) 

𝐷𝐹(𝑧) = ∫𝑑
4�̅�

𝑖

𝑝2 −𝑚2 + 𝑖𝜖
𝑒−𝑖𝑝⋅𝑧 . 

Note that this is the first time we integrate over 𝑝0, whereas so far 

this was fixed by 𝑝0
2 = 𝑝2 +𝑚2. Here, this is no longer assumed.  

PROPAGATORS AS GREENS FUNCTIONS: 

As it turns out, the Feynman propagator (times 𝑖) is a Greens 

function of the Klein-Gordon equation: 
(☐ +𝑚2)𝑖𝐷𝐹(𝑧) = 𝛿(𝑧). 

This is actually easy to see: 

(☐ +𝑚2)𝑖𝐷𝐹(𝑧) = −∫𝑑
4�̅�
(−𝑝2 +𝑚2)

𝑝2 −𝑚2 + 𝑖𝜖⏟        
≈−1

𝑒−𝑖𝑝⋅𝑧 = 𝛿(𝑧). 



5 Quantized Dirac Field 
 

5.1 Quantization of the Dirac Field 
FIELD IN TERMS OF LADDER OPERATORS: 

We saw in 4.4 and 4.7 how the quantized real/complex Klein-

Gordon field looks like. For the Dirac field we also have particles 

and antiparticles, so we should take the complex Klein-Gordon 

field as a starting point and add spinors: 

𝜓(𝑥) = ∫𝑑𝑝 (𝑏𝛼𝑝
† 𝑣𝑝

𝛼𝑒𝑖𝑝⋅𝑥 + 𝑎𝛼𝑝𝑢𝑝
𝛼𝑒−𝑖𝑝⋅𝑥), 

�̅�(𝑥) = ∫𝑑𝑝 (𝑎𝛼𝑝
† �̅�𝑝

𝛼𝑒𝑖𝑝⋅𝑥 + 𝑏𝛼𝑝�̅�𝑝
𝛼𝑒−𝑖𝑝⋅𝑥). 

There is a sum over double spin indices 𝛼 = ↑, ↓ implied! 

𝑏𝛼𝑝
†  creates antiparticles of spin 𝛼 and momentum 𝑝, thus it goes 

with the 𝑣𝑝
𝛼-spinor. 𝑎𝛼𝑝 annihilates particles, thus it goes with a 

𝑢𝑝
𝛼-spinor.  

LADDER OPERATORS IN TERMS OF THE FIELDS: 

The ladder operators can then be given as (>5.1.1) 

𝑎𝛼𝑝 = 𝑒
𝑖𝜔𝑝𝑡�̅�𝛼𝑝𝛾

0𝜓−(𝑝),  

𝑏𝛼𝑝
† = 𝑒−𝑖𝜔𝑝𝑡�̅�𝛼𝑝𝛾

0𝜓+(𝑝), 

where 

𝜓±(𝑝) ≔ ∫𝑑3𝑥 𝑒±𝑖�⃗�𝑥𝜓(�⃗�),      𝜓(�⃗�) = 𝜓(𝑥).  
 

5.2 The Four-Momentum Operator 
THE FOUR-MOMENTUM OPERATOR: 

Just as in 4.5, the conserved charge of space and time translations 

is the four-momentum operator (>5.2.1): 

𝑃𝜈 = ∫𝑑3𝑥 𝒯0𝜈 = ∫𝑑𝑝 𝑝𝜇(𝑎𝛼𝑝
† 𝑎𝛼𝑝 − 𝑏𝛼𝑝𝑏𝛼𝑝

† ). 

This looks similar to 4.7. 

COMMUTATOR RELATIONS GIVE NEGATIVE ENERGIES: 

In analogy to the Klein-Gordon field, we might want to use 

commutator relations for the fields which give the same relations 

for the ladder operators. If we take 

[𝜓(�⃗�), 𝜓†(�⃗�)] = 𝛿(𝑥 − 𝑦) 

we do get them as expected, 

[𝑏𝛼𝑝
† , 𝑏𝜎𝑝′] = (2𝜋)

32𝜔𝑝𝛿𝛼𝜎𝛿(𝑝 − 𝑝
′), 

and 𝑃𝜈  would become (neglecting infinite constants) 

𝑃𝜈 = ∫𝑑𝑝 𝑝𝜇(𝑎𝛼𝑝
† 𝑎𝛼𝑝 − 𝑏𝛼𝑝

† 𝑏𝛼𝑝). 

In contrast to the complex Klein-Gordon field there is a minus sign 

here. For 𝜈 = 0 (𝑃0 = 𝐻), the energy would be unbounded from 

below: It’s the negative energy problem all over again. This is why 

we should use anticommutators. 

THE FINAL FOUR-MOMENTUM OPERATOR: 

Using the correct anticommutators from 5.3, we get (>5.2.2) 

𝑃𝜈 = ∫𝑑𝑝 𝑝𝜇(𝑎𝛼𝑝
† 𝑎𝛼𝑝 + 𝑏𝛼𝑝

† 𝑏𝛼𝑝). 

 

5.3 Anticommutator Relations 
FIELDS: 

We postulate these equal-time anticommutator relations 

{𝜓𝑎(�⃗�), 𝜓𝑏
†(�⃗�)} = 𝛿𝑎𝑏𝛿(�⃗� − �⃗�) 

with all other non-equivalent anticommutators zero. The 𝑎,𝑏-

indices are in case of several fields. Note that this is not analogous 

to the Klein-Gordon case, neither scalar (4.1) nor complex (4.7). 

It is nevertheless necessary to get the right anticommutators for 

the ladder operators, which in turn obey the analogy. 

LADDER OPERATORS: 

Plugging in the expansion from 5.1, we find (>5.3.1) 

{𝑎𝛼𝑝, 𝑎𝜎𝑝′
† } = {𝑏𝛼𝑝, 𝑏𝜎𝑝′

† } = (2𝜋)32𝜔𝑝𝛿𝛼𝜎𝛿(𝑝 − 𝑝
′) 

and all other anticommutators zero. 
 

5.4 The Fock Space 
The Fock Space in the Dirac case is no different from the Klein-

Gordon case in 4.6, except that the states contain now spin 

information. 

LADDER OPERATORS ON MOMENTUM EIGENSTATES: 

Consider an eigenstate of of 𝑃𝜇  (from 4.5) |𝑘〉: 

𝑃𝜇|𝑘〉 = 𝑘𝜇|𝑘〉. 

Using the commutator relations (which also hold for 𝑏𝛼𝑝, >5.4.1) 

[𝑃𝜇 , 𝑎𝛼𝑝
† ] = 𝑝𝜇𝑎𝛼𝑝

† ,     [𝑃𝜇 , 𝑎𝛼𝑝] = −𝑝
𝜇𝑎𝛼𝑝, 

we find that also 𝑎𝑝𝛼
† |𝑘⟩ is an eigenstate of 𝑃𝜇: 

𝑃𝜇𝑎𝛼𝑝
† |𝑘⟩ = [𝑃𝜇 , 𝑎𝛼𝑝

† ]|𝑘⟩ + 𝑎𝛼𝑝
† 𝑃𝜇|𝑘〉 = 𝑝𝜇𝑎𝛼𝑝

† |𝑘⟩ + 𝑎𝛼𝑝
† 𝑘𝜇|𝑘〉

= (𝑝𝜇 + 𝑘𝜇)𝑎𝛼𝑝
† |𝑘〉. 

Thus, the momentum of 𝑎𝛼𝑝
† |𝑘⟩ is about 𝑝𝜇  higher than of |𝑘〉.  

STARTING FROM THE VACUUM: 

We start now from the vacuum state |0⟩ with  

𝑎𝛼𝑝|0〉 = 0 

and create particles of certain momenta: 

𝑎𝛼𝑝
† |0〉 = |𝛼, 𝑝〉,     𝑎𝛼𝑝

† 𝑏𝜎𝑝′
† |0〉 = |𝛼, 𝑝; 𝜎, 𝑝′⟩. 

Since {𝑎𝑝
† , 𝑎𝑝′

† } = 0, we have |𝑝, 𝑝′〉 = −|𝑝′, 𝑝〉 (Fermi symmetry). 

NORMALIZATION: 

Using |𝑝〉 = 𝑎𝛼𝑝
† |0〉 and their commutator we find (>5.4.2) 

⟨𝛼, 𝑝|𝜎, 𝑝′〉 = (2𝜋)32𝜔𝑝𝛿𝛼𝜎𝛿(𝑝 − 𝑝
′). 

 

5.5 Causality and Propagators 
CAUSALITY: 

For the causality of the complex Klein-Gordon field, the relevant 

commutator was Δ(𝑥 − 𝑦) = [𝜙(𝑥), 𝜙†(𝑦)] = 0 (see 4.8). This 

translated to the Dirac case gives us 

Δ̃(𝑥 − 𝑦) ≔ {𝜓(𝑥), �̅�(𝑦)} = 0,     if     (𝑥 − 𝑦)2 < 0. 

If we plug in our fields from 5.1, we get (>5.5.1) 

Δ̃(𝑧) = (𝑖𝜕𝑧 +𝑚)Δ(𝑧) 

with the Δ(𝑧) from 4.8. 

PROPAGATORS: 

Since the anticommutator {𝜓(𝑥), �̅�(𝑦)} is not an operator but just 

a function Δ̃(𝑥 − 𝑦), we can write 

{𝜓(𝑥), �̅�(𝑦)} = ⟨0|{𝜓(𝑥), �̅�(𝑦)}|0⟩

= ⟨0|𝜓(𝑥)�̅�(𝑦)|0⟩ + ⟨0|�̅�(𝑦)𝜓(𝑥)|0⟩. 

Note that in contrast to the Klein-Gordon case, there is a plus sign 

in between here. If now (𝑥 − 𝑦)2 < 0, we know {𝜓(𝑥), �̅�(𝑦)} = 0 

and therefore 𝜓(𝑥)�̅�(𝑦) = −�̅�(𝑦)𝜓(𝑥).  

THE FEYNMAN PROPAGATOR: 

Analogous to 4.8 we define the Feynman propagator 

�̃�𝐹(𝑥 − 𝑦) ≔ ⟨0|𝒯𝜓(𝑥)�̅�(𝑦)|0⟩ ≔ {
+⟨0|𝜓(𝑥)�̅�(𝑦)|0⟩, 𝑥0 ≥ 𝑦0

−⟨0|�̅�(𝑦)𝜓(𝑥)|0⟩, 𝑦0 ≥ 𝑥0
, 

with the difference of the minus sign. We need this, because for 

(𝑥 − 𝑦)2 < 0 it depends on the frame whether 𝑥0 > 𝑦0 or 𝑥0 <

𝑦0. For a frame-independent definition of 𝒯, the two cases must 

agree for (𝑥 − 𝑦)2 < 0, which implies the minus sign, because 

𝜓(𝑥)�̅�(𝑦) = −�̅�(𝑦)𝜓(𝑥). 

Plugging in the field expansion into the vacuum expectation 

values/propagators, we find that we can write (>5.5.2) 

�̃�𝐹(𝑧) = (𝑖𝜕𝑧 +𝑚)𝐷𝐹(𝑧). 

Plugging in for 𝐷𝐹  from 4.8 we get the integral (>5.5.3) 

�̃�𝐹(𝑧) = ∫𝑑
4�̅�

𝑖(𝑝 + 𝑚)

𝑝2 −𝑚2 + 𝑖𝜖
𝑒−𝑖𝑝⋅𝑧 = ∫𝑑4�̅�

𝑖

𝑝 − 𝑚 + 𝑖𝜖
𝑒−𝑖𝑝⋅𝑧. 

Note, that −𝑖�̃�𝐹  is a Greens function of the Dirac equation 

operator (𝑖𝜕 − 𝑚), similar to the Klein-Gordon case from 4.8: 

(𝑖𝜕 − 𝑚) (−𝑖�̃�𝐹(𝑧)) = 𝛿(𝑧). 



6 Quantized EM Field 
 

6.1 Gauge Fixing 
CONTRADICTION WITH QUANTIZATION: 

Gauge invariance poses new problems for quantization. Since the 

photon is a boson, we postulate the commutator relations 
[𝐴𝜇(�⃗�), Π𝜈(�⃗�)] = −𝑖𝜂𝜇𝜈𝛿(�⃗� − �⃗�), 

just as in 4.1. However, this gives us a contradiction. We find Π𝜈 =

−𝐹0𝜈 (>6.1.1). Hence, Π0 = −𝐹00 = 0 (as 𝐹𝜇𝜈 = −𝐹𝜈𝜇). So, the 

commutator [𝐴0, Π0] vanishes, but the right-hand side does not.  

GAUGE FIXING TERM IN THE LAGRANGIAN: 

The solution to this problem lies in the gauge fixing. The Euler-

Lagrange equations in the Lorentz gauge 𝜕𝜇𝐴
𝜇 = 0 read (>6.1.2) 

𝜕𝜈𝜕
𝜈𝐴𝜇 = 𝑗𝜇 . 

Without imposing the Lorentz gauge condition, we get the same 

equations of motion if we consider the Lagrangian (>6.1.3) 

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 −
𝜆

2
(𝜕𝜇𝐴

𝜇)
2
− 𝑗𝜇𝐴

𝜇 

and set 𝜆 = 1 (“Feynman gauge”). Instead of demanding the 

Lorentz gauge 𝜕𝜇𝐴
𝜇 = 0 we will use this modified Lagrangian. 

The canonical momentum now reads (>6.1.4) 

Π0 = −𝜕𝜇𝐴
𝜇,     Π𝑖 = −𝐹0𝑖 . 

Note, that Π0 ≠ 0 anymore and that Π𝑖  has not changed compared 

to the original Lagrangian from 3.6. 

EVEN SIMPLER LAGRANGIAN: 

Instead of adding this gauge fixing term, we can simply write 

ℒ = −
1

2
(𝜕𝜇𝐴𝜈)(𝜕

𝜇𝐴𝜈) − 𝑗𝜇𝐴
𝜇 

and get the same equations of motion again (>6.1.5). The 

canonical momentum now also simplifies (6.1.6): 

Π𝜈 = −�̇�𝜈 . 
 

6.2 Quantization of the EM Field 
We expand the field similar to the Klein-Gordon and Dirac case: 

𝐴𝜇(𝑥) = ∫𝑑𝑝 (𝑎𝜆𝑝
† 𝜀𝜆𝑝

𝜇
𝑒𝑖𝑝⋅𝑥 + 𝑎𝜆𝑝𝜀𝜆𝑝

𝜇
𝑒−𝑖𝑝⋅𝑥). 

Note that we have 𝑚 = 0⟹ 𝜔𝑝 = |𝑝| (see 4.2/4.4) and instead of 

spinors we now have four (𝜆 = 0, 1, 2, 3) polarization four-

vectors 𝜀𝜆𝑝
𝜇
.  

The ladder operator for the physical polarization (𝜆 = 1, 2, 

see 6.3) can be given as (>6.2.1) 

𝑎𝜆𝑝
† = 𝑖𝜀𝜆𝑝 ⋅ ∫ 𝑑

3𝑥 𝑒−𝑖𝑝⋅𝑥𝜕0𝐴(𝑥), 

𝑎𝜆𝑝 = −𝑖𝜀𝜆𝑝 ⋅ ∫ 𝑑
3𝑥 𝑒𝑖𝑝⋅𝑥𝜕0𝐴(𝑥), 

where 𝑔𝜕𝜇𝑓 ≔ 𝑔𝜕𝜇𝑓 − 𝑓𝜕𝜇𝑔. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3 Choosing the Polarizations Vectors 
ORTHOGONALITY AND COMPLETENESS RELATIONS: 

One can always choose the polarization vectors to obey the 

following orthogonality and completeness relations 

𝜀𝜆𝑝 ⋅ 𝜀𝜆′𝑝 = 𝜂𝜆𝜆′ ,     𝜂
𝜆𝜆′𝜀𝜆𝑝

𝜇
𝜀𝜆′𝑝
𝜈 = 𝜂𝜇𝜈 . 

This implies 𝜀0𝑝
2 = 1 is timelike and 𝜀𝑖𝑝

2 = −1 is spacelike. 

CHOICE OF THE POLARIZATION VECTORS: 

Let’s choose some timelike direction 𝑛𝜇  with 𝑛2 = 1 and set 

𝜀0𝑝
𝜇
= 𝑛𝜇 . 

Let 𝜀1𝑝
𝜇
, 𝜀2𝑝
𝜇

 be the physical polarizations, which are perpendicular 

to 𝑛𝜇  and 𝑝𝜇: 

𝜀𝜆𝑝 ⋅ 𝑛 = 𝜀𝜆𝑝 ⋅ 𝑝 = 0,     for     𝜆 = 1, 2. 

Furthermore, we choose the so-called longitudinal polarization 

𝜀3𝑝
𝜇

 to be in the (𝑝, 𝑛)-plane and orthogonal to 𝜀0: 

𝜀3𝑝
𝜇
=
𝑝𝜇

𝑝 ⋅ 𝑛
− 𝑛𝜇 . 

COMPLETENESS OF THE PHYSICAL POLARIZATIONS ONLY: 

If we sum over the physical polarizations only, we get (>6.3.1) 

∑ 𝜀𝜆𝑝
𝜇
𝜀𝜆𝑝
𝜈

𝜆=1,2

= −𝜂𝜇𝜈 −
𝑝𝜇𝑝𝜈

(𝑝 ⋅ 𝑛)2
+
𝑛𝜇𝑝𝜈 + 𝑝𝜇𝑛𝜈

𝑝 ⋅ 𝑛
. 

The latter terms turn out to not influence measurable results in 

QED and are therefore often neglected. In (>10.3.2) we will 

explicitly show for Compton scattering that those two terms 

vanish. 
 

6.4 Commutator Relations 
If we plug in our field expansion from 6.2 into the commutator 

relation of 6.1, 

[𝐴𝜇(�⃗�), Π𝜈(�⃗�)] = −[𝐴𝜇(�⃗�), �̇�𝜈(�⃗�)] = 𝑖𝜂𝜇𝜈𝛿(�⃗� − �⃗�), 

 we find the only non-zero commutator is (>6.4.1) 

[𝑎𝜆𝑝, 𝑎𝜆′𝑝′
† ] = −(2𝜋)32𝜔𝑝𝜂𝜆𝜆′𝛿(𝑝 − 𝑝

′). 
 

6.5 The Four-Momentum Operator 
The four-momentum operator turns out to be (>6.5.1) 

𝑃𝜈 = ∫𝑑3𝑥 𝒯0𝜈 = −∫𝑑𝑝 𝑝𝜈  𝜂𝜆𝜆
′
𝑎𝜆𝑝
† 𝑎𝜆′𝑝. 

 

6.6 The Fock Space 
LADDER OPERATORS ON MOMENTUM EIGENSTATES: 

We have some additional minus signs here at the EM field 

compared to the Klein-Gordon and Dirac case, but it turns out that 

the relation from 4.6 and 5.4 still holds as before (>6.6.1): 

[𝑃𝜇 , 𝑎𝜆𝑝
† ] = 𝑝𝜇𝑎𝜆𝑝

† ,     [𝑃𝜇 , 𝑎𝜆𝑝] = −𝑝
𝜇𝑎𝜆𝑝, 

so, again, we find that also 𝑎𝑝𝛼
† |𝑘⟩ is an eigenstate of 𝑃𝜇 , if |𝑘⟩ is: 

𝑃𝜇𝑎𝑝𝛼
† |𝑘⟩ = [𝑃𝜇 , 𝑎𝑝𝛼

† ]|𝑘⟩ + 𝑎𝑝𝛼
† 𝑃𝜇|𝑘〉 = 𝑝𝜇𝑎𝛼𝑝

† |𝑘⟩ + 𝑎𝛼𝑝
† 𝑘𝜇|𝑘〉

= (𝑝𝜇 + 𝑘𝜇)𝑎𝑝𝛼
† |𝑘〉. 

NEGATIVE NORM OF ONE-PARTICLE STATES: 

Everything looks fine so far, however, we now run into a problem: 

If we start at the vacuum and construct one-particles states as 

usual, |𝜆, 𝑝〉 = 𝑎𝜆𝑝
† |0⟩, they have the norm 

⟨𝜆, 𝑝|𝜆′ , 𝑝′〉 = ⟨0|𝑎𝜆𝑝𝑎𝜆′𝑝′
† |0⟩ = ⟨0|𝑎

𝜆′𝑝′
† 𝑎𝜆𝑝 + [𝑎𝜆𝑝, 𝑎𝜆′𝑝′

† ] |0⟩

= −(2𝜋)32𝜔𝑝𝜂𝜆𝜆′𝛿(𝑝 − 𝑝
′), 

which is negative for 𝜆 = 𝜆′ = 0. This means negative 

probabilities! We will resolve this with Gupta-Bleuler in 6.7.  

 
 
 
 
 
 
 



6.7 Gupta-Bleuler Method 
PHYSICAL STATE SPACE: 

So far, we have not really used any gauge condition – recall from 

6.1 that we could not demand 𝜕𝜇𝐴
𝜇 = 0, because it gives us Π0 =

0. The idea is now not to restrict the operator 𝐴𝜇 by some 

condition but to restrict the Hilbert space, i.e. we divide it into 

“good” physical states with only positive norms and “bad” states, 

including all the negative norms. 

The first idea would be to impose that only states with 𝜕𝜇𝐴
𝜇|𝜓〉 =

0 are physical states, but this doesn’t help, because not even the 

vacuum does obey this (>6.7.1). 

Let’s decompose our field into 𝐴𝜇 = 𝐴+𝜇 + 𝐴−𝜇 , where 

𝐴+𝜇(𝑥) = ∫𝑑𝑝 𝑎𝜆𝑝𝜀𝜆𝑝
𝜇
𝑒−𝑖𝑝⋅𝑥 ,     𝐴−𝜇(𝑥) = ∫𝑑𝑝 𝑎𝜆𝑝

† 𝜀𝜆𝑝
𝜇
𝑒𝑖𝑝⋅𝑥 . 

What will work is to demand that a state |𝜓⟩ is physical only if  

𝜕𝜇𝐴
+𝜇|𝜓〉 = 0 

This is called the Gupta-Bleuler condition. Since 𝐴+† = 𝐴−, this 

means that physical state matrix elements of 𝜕𝜇𝐴
𝜇 vanish: 

⟨𝜓′|𝜕𝜇𝐴
𝜇|𝜓⟩ = 0. 

𝝀 = 𝟎 AND 𝝀 = 𝟑 UNPHYSICAL POLARIZATIONS: 

Using our choice of polarization vectors, we can write (>6.7.2) 

𝜕𝜇𝐴
+𝜇 = −𝑖 ∫𝑑𝑝 𝑒−𝑖𝑝⋅𝑥(𝑝 ⋅ 𝑛)(𝑎0𝑝 − 𝑎3𝑝). 

Thus, the Gupta-Bleuler condition is equivalent to 

(𝑎0𝑝 − 𝑎3𝑝)|𝜓〉 = 0    ⟺      〈𝜓|(𝑎0𝑝
† − 𝑎3𝑝

† ) 

and only the physical states will contribute to the expectation 

value of, e.g., the momentum operator from 6.5 (>6.7.3): 

⟨𝜓|𝑃𝜈|𝜓⟩ ∼̂ 𝜂𝜆𝜆
′
⟨𝜓|𝑎𝜆𝑝

† 𝑎𝜆′𝑝|𝜓⟩ = ∑ ⟨𝜓|𝑎𝜆𝑝
† 𝑎𝜆𝑝|𝜓⟩

𝜆=1,2

. 

The proof that states with negative norms are unphysical is given 

in (>6.7.4). 
 

6.8 Causality and Propagators 
CAUSALITY: 

For the causality of the complex Klein-Gordon field, the relevant 

commutator was Δ(𝑥 − 𝑦) = [𝜙(𝑥), 𝜙†(𝑦)] = 0 (see 4.8). Now we 

have a real bosonic field and therefore consider the relation 

Δ̂𝜇𝜈(𝑥 − 𝑦) ≔ [𝐴𝜇(𝑥), 𝐴𝜈(𝑦)] = 0,     if     (𝑥 − 𝑦)2. 

If we plug in our fields from 6.2, we get (>6.8.1) 

Δ̂𝜇𝜈(𝑧) = −𝜂𝜇𝜈Δ(𝑧) 

with the Δ(𝑧) from 4.8. 

PROPAGATORS: 

Since the commutator [𝐴𝜇(𝑥), 𝐴𝜈(𝑦)] is not an operator but just a 

function Δ̂𝜇𝜈(𝑥 − 𝑦), we can write 
[𝐴𝜇(𝑥), 𝐴𝜈(𝑦)] = ⟨0|[𝐴𝜇(𝑥), 𝐴𝜈(𝑦)]|0⟩

= ⟨0|𝐴𝜇(𝑥)𝐴𝜈(𝑦)|0⟩ − ⟨0|𝐴𝜈(𝑦)𝐴𝜇(𝑥)|0⟩. 

THE FEYNMAN PROPAGATOR: 

Analogous to 4.8 we define the Feynman propagator 

�̂�𝐹
𝜇𝜈(𝑥 − 𝑦) ≔ ⟨0|𝒯𝐴𝜇(𝑥)𝐴𝜈(𝑦)|0⟩

≔ {
⟨0|𝐴𝜇(𝑥)𝐴𝜈(𝑦)|0⟩, 𝑥0 ≥ 𝑦0

⟨0|𝐴𝜈(𝑦)𝐴𝜇(𝑥)|0⟩, 𝑦0 ≥ 𝑥0
. 

Plugging in the field expansion into the vacuum expectation 

values/propagators, we find that we can write (>6.8.2) 

�̂�𝐹
𝜇𝜈(𝑧) = −𝜂𝜇𝜈𝐷𝐹(𝑧). 

Plugging in for 𝐷𝐹  for 𝑚 = 0 from 4.8 we get the integral 

�̂�𝐹
𝜇𝜈(𝑧) = ∫𝑑4�̅�

−𝑖𝜂𝜇𝜈

𝑝2 + 𝑖𝜖
𝑒−𝑖𝑝⋅𝑧 . 

THE FEYNMAN PROPAGATOR FOR ARBITRARY 𝝀: 

In a general “gauge”, not the Feynman “gauge” 𝜆 = 1 from 6.1, we 

get 

�̂�𝐹
𝜇𝜈(𝑧) = ∫𝑑4�̅�

−𝑖 (𝜂𝜇𝜈 − (1 −
1
𝜆
)
𝑝𝜇𝑝𝜈

𝑝2
)

𝑝2 + 𝑖𝜖
𝑒−𝑖𝑝⋅𝑧 . 



7 Interactions and the S-Matrix 
 

7.1 Interactions in Lagrangians and Hamiltonians 
LAGRANGIAN: 

Recall the QED Lagrangian from 3.6 

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝑖𝐷 −𝑚0)𝜓,     𝐷
𝜇 = 𝜕𝜇 − 𝑖𝑒0𝐴

𝜇. 

Let’s split it into a free and interaction part, ℒ = ℒ0 + ℒInt, with 

ℒInt = 𝑒0�̅�𝐴𝜓. 

HAMILTONIAN: 

From 3.3 we know 

𝐻 = ∫𝑑3𝑥 (Π𝑎�̇�𝑎 − ℒ), 

where 𝜑𝑎 ∈ {𝜙, 𝜓, �̅�, 𝐴𝜇} and Π𝑎  is the corresponding conjugate 

momentum. Obviously, the interaction Lagrangian does not 

contribute to Π𝑎 = 𝜕ℒ/𝜕�̇�𝑎, thus the interaction part of the 

Hamiltonian 𝐻 = 𝐻0 + 𝐻Int is simply 

𝐻Int = −∫𝑑
3𝑥 ℒInt . 

INTERACTIONS GIVE NON-LINEAR EQUATIONS OF MOTION: 

Consider, for example, an interaction ℒInt = −𝜆𝜙
4/4! to the free 

Klein-Gordon field (“𝜙4-theory”). The Euler-Lagrange equation 

then reads 

(☐+𝑚0
2)𝜙 = −

𝜆

3!
𝜙3. 

There is now no simple expansion in terms of ladder operators 

anymore, as it was the case for the free field in 4.4. Assume we 

would find such an expansion for 𝜙(�⃗�) at some fixed time 𝑡0 and 

try to develop it in time (Heisenberg picture): 

𝜙(𝑡, �⃗�) = 𝑒𝑖𝐻(𝑡−𝑡0)𝜙(𝑡0, �⃗�)𝑒
−𝑖𝐻(𝑡−𝑡0). 

Now our 𝐻 is not simply 𝑎†𝑎 as before, but as it depends on higher 

powers of 𝜙, also terms like 𝑎†𝑛𝑎𝑚 can occur. Thus, 𝜙(𝑥), when 

applied to the vacuum, now not only creates single particle states, 

but multiparticle states.  
 

7.2 Interacting Fock Space 
INTERACTING VACUUM: 

As a consequence of the discussion in 7.1, the Hilbert space of 

interacting theories differs from the one of free theories: We 

introduce the “interacting vacuum” |Ω〉 in contrast to the “free 

vacuum” |0〉.  Also, the particle masses 𝑚 and couplings 𝑒 will 

differ from the “bare” mass 𝑚0 and “bare” charge 𝑒0 in the 

Lagrangian. 

COMPLETENESS RELATION: 

Let us constitute our “interacting Fock space” out of the 

“interacting vacuum” |Ω⟩ and all possible 𝑁 particle states |𝜆, 𝑝⟩, 

where 𝑝 is the total momentum and 𝜆 all other quantum numbers, 

including the distribution of 𝑝 among the 𝑁 particles. The 

completeness relation then reads (>7.2.1) 

𝕀 = |Ω〉〈Ω| +∑∫𝑑𝑝𝜆 |𝜆, 𝑝〉⟨𝜆, 𝑝|

𝜆

. 

|𝜆, 𝑝⟩ is an eigenstate of the momentum operator 𝑃𝜇  with 

eigenvalue 𝑝𝜇 . 

INTRODUCTION OF THE 𝒁: 

Since the vacuum is translationally invariant, the vacuum 

expectation value of a single field is always constant: 

⟨Ω|𝜑(𝑥)|Ω⟩ = ⟨Ω|𝑒𝑖𝑥⋅𝑃𝜑(0)𝑒−𝑖𝑥⋅𝑃|Ω⟩ = ⟨Ω|𝜑(0)|Ω⟩. 

We can always redefine the field by subtracting this constant such 

that this vacuum expectation value vanishes. Similarly, consider 

(>7.2.2) 

⟨Ω|𝜑(𝑥)|𝜆, 𝑝⟩ = ⟨Ω|𝜑(0)|𝜆, 0⟩𝑒−𝑖𝑥⋅𝑝. 

Thus, also the absolute squared hereof only depends on 𝜆: 
|⟨Ω|𝜑(𝑥)|𝜆, 𝑝⟩|2 = |⟨Ω|𝜑(0)|𝜆, 0⟩|2 =∶ 𝑍𝜆. 

 

7.3 Källén-Lehman Spectral Representation 
We find that the time-ordered interacting propagator is just a sum 

of free Feynman propagators times 𝑍𝜆 (>7.3.1): 

⟨Ω|𝒯𝜙(𝑥)𝜙(𝑦)|Ω⟩ = ∑𝑍𝜆𝐷𝐹(𝑥 − 𝑦,𝑚𝜆
2)

𝜆

. 

It was the mass in the measure 𝑑𝑝𝜆 from 7.2, which depended on 

𝜆 (>7.2.1). This dependence propagates through to the mass of 

the free Feynman propagator 𝐷𝐹(𝑥 − 𝑦,𝑚𝜆
2). 

The sum over 𝜆 accounts for all possible 𝑁 particle states and 𝑚𝜆 

is the corresponding invariant mass. For 𝑁 ≥ 2, 𝑚𝜆 can have 

arbitrary values 𝑚𝜆 ≥ 𝑁𝑚 (𝑚𝜆 = 𝑁𝑚 if all particles are at rest). 

But for 𝑁 = 1, 𝑚𝜆=1 is fixed to 𝑚𝜆 = 𝑚. Källén/Lehmann made 

this spectrum of possible masses explicit by writing (>7.3.2) 

          ⟨Ω|𝒯𝜙(𝑥)𝜙(𝑦)|Ω⟩ = ∫ 𝑑𝑀2 𝜌(𝑀2) 𝐷𝐹(𝑥 − 𝑦,𝑀
2)

∞

0

. 

Since we already argued that 𝜌(𝑀2) will have a single 𝛿-peak at 

𝑀 = 𝑚 and is then continuous for 𝑀2 > (2𝑚)2, we may extract 

this first term as follows (𝑍 ≔ 𝑍1): 
⟨Ω|𝒯𝜙(𝑥)𝜙(𝑦)|Ω⟩

= 𝑍𝐷𝐹(𝑥 − 𝑦,𝑚
2) + ∫ 𝑑𝑀2 𝜌(𝑀2) 𝐷𝐹(𝑥 − 𝑦,𝑀

2)
∞

(2𝑚)2
. 

In words, the propagator of an interaction theory will equal 𝑍 

times the propagator of a free theory, but with physical mass 𝑚 ≠

𝑚0 and also receives contributions from multiparticle states due 

to multiparticle self-interactions like in the picture. 

Note, that this equation shows that the interacting propagator has 

a pole at 𝑚 and a “branch cut” for 𝑀 ≥ (2𝑚)2; that is, it diverges 

at 𝑝2 = 𝑚2 and 𝑝2 = 𝑀2 for 𝑀2 ≥ (2𝑚)2. 
 

7.4 The S-Matrix and “in” and “out” Fields 
S-MATRIX TRANSLATES “IN” INTO “OUT” FIELDS: 

We consider scattering to be a process where we have free 

particles in the beginning, then the scattering takes place and 

finally we are left with free particles in the end. The free particles 

are created by “in” and “out” fields 𝜑∓, which obey the free 

Lagrangian ℒ0 but with mass 𝑚. We now define the 𝑆-operator to 

translate “in” into “out” fields: 

𝜑+ = 𝑆
−1𝜑−𝑆. 

There is only one vacuum state, that is to say 

|Ω±⟩ = |Ω⟩,     with     𝑆|Ω〉 = |Ω〉. 

It is quite straightforward to show that (>7.4.1) 

|𝛼±⟩ = 𝑆
∓1|𝛼∓⟩,     ⟨𝛼±| = ⟨𝛼∓|𝑆

±1,          𝑆†𝑆 = 1. 

Therefore, we find for the probability to start from an “in” state 

𝛼− and end in an “out” state 𝛽+ can be given as 

𝑆𝛽𝛼 ≔ ⟨𝛽+|𝛼−⟩ = ⟨𝛽±|𝑆|𝛼±⟩. 

“IN”, “OUT” AND INTERACTING FIELDS: 

Consider the expression 

lim
𝑡→±∞

⟨Ω|𝒯𝜙(𝑥)𝜙(𝑦)|Ω⟩ =
?
𝑍𝐷𝐹(𝑥 − 𝑦,𝑚

2) 

and compare it with the last expression in 7.3. At late and early 

time, the particles should become real, physical particles (in 

contrast to virtual particles), that is they obey 𝑝2 = 𝑚2 (they are 

on the mass shell or on-shell). Thus, for 𝑡 → ±∞ the term 

containing a pole 𝑝2 = 𝑚2 will blow up and we can neglect the 

other terms (the integral over 𝑀2), that are finite at this point. 

Since 𝐷𝐹(𝑥 − 𝑦,𝑚) is just the propagator of the free “in” and “out” 

fields, we find 

lim
𝑡→±∞

⟨Ω|𝒯𝜙(𝑥)𝜙(𝑦)|Ω⟩ = 𝑍⟨𝛼|𝜙±(𝑥)𝜙±(𝑦)|𝛽⟩ 

⟹          lim
𝑡→±∞

⟨𝛼|𝜙|𝛽⟩ = √𝑍⟨𝛼|𝜙±|𝛽⟩.                 

It can be shown that 𝜙 → √𝑍𝜙± as an operator equation is not 

true. Still, we will use also this limit, keeping in mind that it only 

holds when we put the fields into expectation values afterwards. 

This also holds for any other field like 𝜓 and 𝐴𝜇 (without proof). 
 



7.5 LSZ Reduction 
S-MATRIX ELEMENTS IN TERMS OF TIME-DEPENDENT 

LADDER OPERATOS: 

We want to calculate the S-matrix element 𝑆𝛽𝛼 ≔ ⟨𝛽+|𝛼−⟩ for 

some scattering. Those “in” and “out” states are free theory states 

and can therefore be created by corresponding free “in” and “out” 

fields 𝜙± expandable in free “in” and “out” ladder operators 

𝑎±,𝑝, 𝑎±,𝑝
† , where (>7.5.1) 

𝑎±,𝑝
† = −𝑖 ∫𝑑3𝑥 𝑒−𝑖𝑥⋅𝑝𝜕0𝜙±(𝑥). 

Thus, if we have an “in” state |𝛼−⟩ with momenta {𝑝𝑖} and an “out” 

state |𝛽+⟩ with momenta {𝑝𝑖
′}, we can write the corresponding S-

matrix element as 

𝑆𝛽𝛼 = ⟨𝛽+|𝛼−⟩ = ⟨{𝑞𝑖}+|{𝑝𝑖}−⟩ = ⟨Ω|𝑎+,𝑞1⋯𝑎−,𝑝1
† ⋯|Ω⟩. 

DERIVATION OF LSZ REDUCTION FOR A SCALAR FIELD: 

We now find that we can write (>7.5.2) 

  𝑎+,𝑞 − 𝑎−,𝑞 = 𝐼𝑞 ,  𝑎+,𝑞
† − 𝑎−,𝑞

† = −𝐼−𝑞 , 

  𝑎+,𝑞𝐼𝑝1,…,𝑝𝑛 − 𝐼𝑝1,…,𝑝𝑛𝑞−,𝑞 = 𝐼𝑝1,…,𝑝𝑛,𝑞 , 

  𝑎+,𝑞
† 𝐼𝑝1,…,𝑝𝑛 − 𝐼𝑝1,…,𝑝𝑛𝑎−,𝑞

† = −𝐼𝑝1,…,𝑝𝑛,−𝑞 , 

where 

             𝐼𝑝1,…,𝑝𝑛 ≔ ∫𝒟𝑥1,𝑝1⋯𝒟𝑥𝑛,𝑝𝑛  𝒯𝜙(𝑥1)⋯𝜙(𝑥𝑛), 

             𝒟𝑥,𝑝 ≔ 𝑖𝑍−1 2⁄  𝑑4𝑥 𝑒𝑖𝑥⋅𝑝 (☐𝑥 +𝑚
2). 

Now consider for example 2 → 2 scattering. We permute the 

creation operators to the left and the annihilation operators to the 

right so they vanish when meeting the vacuum state using the 

identities above and finally find (>7.5.3) 

      𝑆𝛽𝛼 = ⟨Ω|𝑎+,𝑞1𝑎+,𝑞2𝑎−,𝑝1
† 𝑎−,𝑝2

† |Ω⟩ 

  = (2𝜋)32𝜔𝑝2𝛿(𝑝2 − �⃗�2)⟨Ω|𝑎+,𝑞1𝑎−,𝑝1
† |Ω⟩ 

   + (2𝜋)32𝜔𝑝2𝛿(𝑝2 − �⃗�1)⟨Ω|𝑎+,𝑞2𝑎−,𝑝1
† |Ω⟩ 

   + (2𝜋)32𝜔𝑝1𝛿(𝑝1 − �⃗�2)⟨Ω|𝑎+,𝑞1𝑎−,𝑝2
† |Ω⟩ 

   + (2𝜋)32𝜔𝑝1𝛿(𝑝1 − �⃗�1)⟨Ω|𝑎+,𝑞2𝑎−,𝑝2
† |Ω⟩ 

   − (2𝜋)32𝜔𝑝1𝛿(𝑝1 − �⃗�1)(2𝜋)
32𝜔𝑝2𝛿(𝑝2 − �⃗�2) 

   − (2𝜋)32𝜔𝑝1𝛿(𝑝1 − �⃗�2)(2𝜋)
32𝜔𝑝2𝛿(𝑝2 − �⃗�1) 

   + ⟨Ω|𝐼𝑞1,𝑞2,−𝑝1,−𝑝2|Ω⟩. 

Only the last term contains an interacting propagator; all the 

others are disconnected parts. Since we are only interested into 

the interaction, the last term is the only one we will consider: 

𝑆𝛽𝛼 = d. p. + ⟨Ω|𝐼𝑞1,𝑞2,−𝑝1,−𝑝2|Ω⟩ =̂ ⟨Ω|𝐼𝑞1,𝑞2,−𝑝1,−𝑝2|Ω⟩. 

OVERVIEW: 

Effectively, i.e. after putting them into a vacuum matrix element, 

we can use the following formulas and then apply time-ordering: 

KLEIN-GORDON FIELD: 

incoming:     𝑎−,𝑝
† = 𝑖𝑍−1 2⁄ ∫𝑑4𝑥 𝑒−𝑖𝑝⋅𝑥(☐ +𝑚2)𝜙(𝑥), 

outgoing:      𝑎+,𝑝 = 𝑖𝑍
−1 2⁄ ∫𝑑4𝑥 𝑒𝑖𝑝⋅𝑥(☐ +𝑚2)𝜙(𝑥). 

DIRAC FIELD: 

Particles (>7.5.4): 

incoming:     𝑎−,𝛼𝑝
† = 𝑖𝑍2

−1 2⁄ ∫𝑑4𝑥 �̅�(𝑥)(𝑖�⃖� + 𝑚)𝑢𝛼𝑝𝑒
−𝑖𝑝⋅𝑥, 

outgoing:      𝑎+,𝛼𝑝 = −𝑖𝑍2
−1 2⁄ ∫𝑑4𝑥 𝑒𝑖𝑝⋅𝑥�̅�𝛼𝑝(𝑖𝜕 − 𝑚)𝜓(𝑥). 

Antiparticles (>7.5.5): 

incoming:     𝑏−,𝛼𝑝
† = 𝑖𝑍2

−1 2⁄ ∫𝑑4𝑥 𝑒−𝑖𝑝⋅𝑥�̅�𝛼𝑝(𝑖𝜕 − 𝑚)𝜓(𝑥), 

outgoing:      𝑏+,𝛼𝑝 = −𝑖𝑍2
−1 2⁄ ∫𝑑4𝑥 �̅�(𝑥)(𝑖�⃖� + 𝑚)𝑣𝛼𝑝𝑒

𝑖𝑝⋅𝑥 . 

EM FIELD (>7.5.6): 

incoming:     𝑎−,𝜆𝑝
† = −𝑖𝑍3

−1 2⁄ ∫𝑑4𝑥 𝑒−𝑖𝑝⋅𝑥 ☐𝜀𝜆𝑝 ⋅ 𝐴(𝑥), 

outgoing:      𝑎+,𝜆𝑝 = −𝑖𝑍3
−1 2⁄

∫𝑑4𝑥 𝑒𝑖𝑝⋅𝑥  ☐𝜀𝜆𝑝 ⋅ 𝐴(𝑥).  

 

LSZ REDUCTION FORMULA – ALTERNATIVE FORM: 

So far; identity 𝑆𝛽𝛼 = ⟨Ω|𝐼𝑞1,𝑞2,−𝑝1,−𝑝2|Ω⟩ together with the 

definition of 𝐼𝑝1,…,𝑝𝑛  is what we would call the LSZ reduction 

formula. However, this formula can also be given as (>7.5.7) 

(Π𝑖=1
𝑛

𝑖√𝑍

𝑞𝑖
2 −𝑚2

) (Π𝑗=1
𝑚

𝑖√𝑍

𝑝𝑗
2 −𝑚2

) ⟨{𝑞𝑖}+|{𝑝𝑖}−⟩⏟        
=𝑆𝛽𝛼

= ∫Π𝑖=1
𝑛 𝑑4𝑥𝑖  𝑒

𝑖𝑞𝑖⋅𝑥𝑖 ∫Π𝑗=1
𝑚 𝑑4𝑦𝑖  𝑒

−𝑖𝑝𝑖⋅𝑦𝑖 ⟨Ω|𝒯𝜙(𝑥1)⋯𝜙(𝑦1)⋯ |Ω⟩. 

This formula states, that the 𝑆-matrix element is the coefficient of 

the multiparticle pole of the Fourier transformed correlation 

function ⟨Ω|𝒯𝜙(𝑥1)⋯𝜙(𝑦1)⋯ |Ω⟩. 
 

7.6 About the Self-Energies 
SELF-ENERGIES TO LOWEST ORDER: 

The factors 𝑍, 𝑍2 and 𝑍3 are called self-energies of the particles, 

because they can be interpreted as their self-interaction as 

explained by the little sketch in 7.4. Formally, those interactions 

are loops which only come up in higher orders of perturbation 

theory. To the lowest order, we can therefore take 

𝑍 = 𝑍2 = 𝑍3 = 1 + 𝒪(𝛼),          𝛼 ∼ 𝑔
2. 

SELF-ENERGIES IN HIGHER ORDERS: 

If we do want to calculate higher orders of perturbation theory, 

we can absorb all the self-interactions into this factor 𝑍, as 

already explained in 7.4. Thus, for each incoming and outgoing 

particle we note down a factor √𝑍 (or √𝑍2 for fermions or √𝑍3 for 

photons). Then, we need to calculate 𝑍 to the necessary order of 

𝛼 and plug in the result. In that way, we separate the calculation 

from the loops coming from self-interactions from the loops 

coming from vertex corrections. 

It will not be until chapter 13 that we need to take care of those 

self-energies, because until then we will only calculate processes 

up to first order were we can set the self-energies to one. 

For the same reason, we will take 𝑚2 = 𝑚0
2 + 𝒪(𝛼) and thus we 

won’t distinguish between them until chapter 13. 
 

7.7 Overview of Pictures in Quantum Mechanics 
SCHRÖDINGER PICTURE (>7.7.1): 

In the Schrödinger picture, states evolve in time like 

𝑖
𝑑|𝜓(𝑡)〉𝑆
𝑑𝑡

= 𝐻𝑆|𝜓(𝑡)⟩𝑆, 

while operators are independent of time. From the Schrödinger 

equation follows that 

|𝜓(𝑡)〉𝑆 = 𝑒
−𝑖𝐻𝑆(𝑡−𝑡0)|𝜓(𝑡0)〉𝑆. 

HEISENBERG PICTURE (>7.7.2): 

In the Heisenberg picture, states are fixed and operator time-

dependent. We define 

|𝜓〉𝐻 ≔ 𝑒𝑖𝐻𝑆𝑡|𝜓(𝑡)〉𝑆,     𝑂𝐻(𝑡) ≔ 𝑒𝑖𝐻𝑆𝑡𝑂𝑆𝑒
−𝑖𝐻𝑆𝑡 . 

Note that 
⟨𝜓|𝑂𝐻(𝑡)|𝜓⟩𝐻
.

𝐻 = ⟨𝜓(𝑡)|𝑂𝑆|𝜓(𝑡)⟩𝑆
.

𝑆. 

INTERACTION PICTURE (>7.7.3): 

In the interaction picture, we split 𝐻𝑆 = 𝐻0 + 𝐻Int, where 𝐻0 

governs the time-evolution of the operators and 𝐻Int of the states. 

We define 

|𝜓(𝑡)〉𝐼 ≔ 𝑒𝑖𝐻0𝑡|𝜓(𝑡)〉𝑆,     𝑂𝐼(𝑡) ≔ 𝑒𝑖𝐻0𝑡𝑂𝑆𝑒
−𝑖𝐻0𝑡 . 

𝐻Int governs the time-evolution of the states in the sense that 

𝑖
𝑑

𝑑𝑡
|𝜓(𝑡)〉𝐼 = 𝐻Int,𝐼(𝑡)|𝜓(𝑡)〉𝐼 . 

Note that still expectation values are picture-independent, 
⟨𝜓|𝑂𝐼(𝑡)|𝜓⟩𝐼
.

𝐼 = ⟨𝜓(𝑡)|𝑂𝑆|𝜓⟩𝑆
.

𝑆. 

We can define a time-evolution operator for the interaction 

picture |𝜓(𝑡)〉𝐼 = 𝑈𝐼(𝑡, 𝑡0)|𝜓(𝑡0)〉𝐼 , for which holds that 

𝑈𝐼(𝑡, 𝑡0) = 𝒯 exp (−𝑖 ∫ 𝑑𝑡′ 𝐻Int,𝐼(𝑡)
𝑡

𝑡0

). 

 



7.8 Pictures in Quantum Field Theory 
FROM HEISENBERG TO INTERACTION PICTURE: 

The field operators are obviously time dependent. Also, the Fock 

space states where time-independent. So actually, without 

putting any emphasis on this fact, we have worked in the 

Heisenberg picture from the point on, where we used fields as 

operators. In our minds we can add indices “𝐻” to all our field 

operators we wrote down. 

Let’s still omit this index. From 7.7 we can connect the interaction 

picture with the Heisenberg picture like (>7.8.1) 

𝜑𝐼(𝑡) = 𝑈(𝑡, 𝑡0)𝜑(𝑡)𝑈
−1(𝑡, 𝑡0),     𝑈(𝑡, 𝑡0) ≔ 𝑒𝑖𝐻0(𝑡−𝑡0)𝑒−𝑖𝐻(𝑡−𝑡0). 

One can now show that surprisingly we find (>7.8.2) 

𝑈(𝑡, 𝑡0) = 𝑈𝐼(𝑡, 𝑡0). 

S-OPERATOR AS TIME-EVOLUTION OPERATOR: 

We already called “in” states “early” and “out” states “late”. It is 

somehow intuitive that those states (in the interaction picture) 

can be connected by the time-evolution operator from time-

dependent perturbation theory 𝑈𝐼 . If we now assume that the “in” 

states are valid for 𝑡 → −∞ and the “out” states for 𝑡 → ∞ and 

using the relationship between the interacting part of the 

Hamiltonian and Lagrangian from 7.1 we can write the 𝑆-operator 

using a 𝑑4𝑥-integral over the Lagrangian (>7.8.3): 

𝑆 = 𝑈𝐼(∞,−∞) = 𝒯 exp (𝑖 ∫ 𝑑4𝑥 ℒInt,𝐼

∞

−∞

), 

where we used ℋ = Π𝑎�̇�𝑎 − ℒ from 3.3 to get 𝐻𝐼 = ∫𝑑
3𝑥 ℋ𝐼 =

−∫𝑑3𝑥 ℒ𝐼 . 
 

7.9 The N-Point Functions 
DEFINITION: 

We saw in 7.5 that 𝑆-matrix elements are vacuum expectation 

values of ladder operators, which can be expressed as (integrals 

of) vacuum expectation values of the fields by the LSZ reduction. 

Those vacuum expectation values of the fields are called n-point 

functions or Green’s functions of the interacting theory: 

𝐺(𝑥1, 𝑥2, … , 𝑥𝑛) ≔ ⟨Ω|𝒯𝜑(𝑥1)𝜑(𝑥2)⋯𝜑(𝑥𝑛)|Ω⟩, 

where the 𝜑’s are just any (Heisenberg picture) fields as in 7.1. 

RELATION OF INTERACTING AND “IN”/”OUT” FIELDS: 

Those fields 𝜑 are neither “in” nor “out” fields 𝜑∓, but the fields of 

the interacting theory. However, they become, for example “in” 

fields for early times.  

𝜑𝐼(𝑡) = 𝑈𝐼(𝑡, 𝑡0)𝜑(𝑡)𝑈𝐼
−1(𝑡, 𝑡0). 

N-POINT FUNCTION IN TERMS OF “FREE” FIELDS: 

After some work (>7.9.1) one arrives at (𝜑𝑖 ≔ 𝜑(𝑥𝑖)) 

𝐺(𝑥1, … 𝑥𝑛) =
⟨0|𝒯   𝜑𝐼1𝜑𝐼2⋯𝜑𝐼𝑛    exp(𝑖 ∫ 𝑑

4𝑥 ℒInt,𝐼) |0⟩

⟨0|𝒯 exp(𝑖 ∫ 𝑑4𝑥 ℒInt,𝐼) |0⟩
. 

That is, we now have the vacuum states of the free theory and the 

interaction picture fields instead of the Heisenberg picture fields. 

The benefit is now that the interaction picture fields 𝜑𝐼  of the 

interacting theory are the Heisenberg picture fields 𝜑 of the free 

theory (>7.9.2)! That is, they satisfy the free equations of motion 

and can therefore be expanded in ladder operators just like the 

free Heisenberg fields! And we know how those act on the |0⟩-

vacuum. 

For small perturbations/interactions ℒInt,𝐼 , we can expand the 

exponential to some finite order. 

 
 
 
 
 
 
 
 
 

7.10 Wick’s Theorem 
OVERVIEW OVER 2-POINT FUNCTIONS: 

We just saw that interaction picture fields 𝜑𝐼  of the interaction 

theory are free fields 𝜑 of the free theory. For those we saw in 4.8, 

5.5 and 6.8 that the 2-point functions can be given as the Feynman 

propagators: 

𝐷𝐹 = ⟨0|𝒯𝜙(𝑥)𝜙
†(𝑦)|0〉 = ∫𝑑4�̅�

𝑖

𝑝2 −𝑚2 + 𝑖𝜖
𝑒−𝑖𝑝⋅(𝑥−𝑦) ,

�̃�𝐹 = ⟨0|𝒯𝜓(𝑥)�̅�(𝑦)|0⟩   = ∫𝑑4�̅�
𝑖

𝑝 − 𝑚 + 𝑖𝜖
𝑒−𝑖𝑝⋅(𝑥−𝑦),     

�̂�𝐹 = ⟨0|𝒯𝐴
𝜇(𝑥)𝐴𝜈(𝑦)|0⟩ = ∫𝑑4�̅�

−𝑖𝜂𝜇𝜈

𝑝2 + 𝑖𝜖
𝑒−𝑖𝑝⋅(𝑥−𝑦).            

 

WICK’S THEOREM (>7.10.1): 

By Wick’s Theorem, arbitrary 𝑛-point functions can be reduced to 

sums of products of 2-point functions. 

ODD 𝑛: 

Wick’s Theorem’s first statement is that all 𝑛-point functions 

vanish, if 𝑛 is odd. 

EVEN 𝑛: 

For even 𝑛 we get all possible combinations of time-ordered 2-

point functions. For example, for 𝑛 = 4 we have 
⟨0|𝒯𝜑1𝜑2𝜑3𝜑4|0⟩ = ±𝐷12𝐷34 ± 𝐷13𝐷24 ± 𝐷14𝐷23, 

where 

𝐷𝑖𝑗 ≔ 𝐷𝐹(𝑥𝑖 − 𝑥𝑗) = ⟨0|𝒯𝜑𝑖𝜑𝑗|0⟩,          𝜑𝑖 ≔ 𝜑(𝑥𝑖). 

For fermion fields we catch a minus sign in front of terms with odd 

permutations of the field order compared to the time-ordering of 

the four fields (e.g., if the time ordering is 1234, then 1324 is an 

odd permutation). 

Note that the 2-point functions are already time-ordered and 

therefore can be given as Feynman-propagators! 

If we have different types of fields (e.g. photon and fermion 

fields), they separate (>7.10.2). 



8 Feynman Diagrams and Rules 
 

8.1  ϕ⁴-Theory 
LAGRANGIAN OF 𝝓𝟒-THEORY: 

The theory with the Lagrangian 

ℒ =
1

2
(𝜕𝜇𝜙)

2
−
𝑚2

2
𝜙2 −

𝜆

4!
𝜙4 

is called 𝜙4-theory – a theory with a real Klein-Gordon field 𝜙 and 

an interaction Lagrangian ℒInt = −𝜆𝜙
4/4!. It is the simplest 

interacting theory and the concept of Feynman diagrams 

becomes quite transparent in this theory. 

Let’s consider the propagation of a single particle but include the 

possibility of interactions. That is, we want to see what the 𝑆-

matrix element 

𝒮 ≔ 〈Ω|𝑎+,𝑝2𝑎−,𝑝1
† |Ω⟩ 

looks like.  

LSZ REDUCTION: 

Plugging in our LSZ formulas with 𝑍 = 𝑍𝑖 = 1 (see 7.6), we find 

     𝒮 = 𝑖2∫𝑑4𝑥1 𝑑
4𝑥2 𝑒

−𝑖𝑝2⋅𝑥2𝑒𝑖𝑝1⋅𝑥1  

(☐2 +𝑚
2)(☐1 +𝑚

2)〈Ω|𝒯𝜙(𝑥2)𝜙(𝑥1)|Ω⟩. 

PERTURBATION EXPANSION: 

Let’s call 𝒢 ≔ 〈Ω|𝒯𝜙(𝑥2)𝜙(𝑥1)|Ω⟩ and use the formula of 7.9: 

𝒢 =
⟨0|𝒯𝜙𝐼1𝜙𝐼2 exp(𝑖 ∫ 𝑑

4𝑧 ℒInt,𝐼) |0⟩

⟨0|𝒯 exp(𝑖 ∫ 𝑑4𝑧 ℒInt,𝐼) |0⟩
=∶
𝒢𝑁
𝒢𝐷
. 

The fields are now in the interaction picture (which equals the 

Heisenberg picture of the free theory). From now on, we will drop 

the index 𝐼, but the fields are still interaction picture fields. Let’s 

expand the exponential up to first order in 𝜙4: 

𝒢𝑁 = ⟨0|𝒯𝜙1𝜙2 (1 − 𝑖
𝜆
4! ∫

𝑑4𝑧 𝜙4(𝑧)) |0⟩. 

The zeroth order is just the free field result 𝒢𝑁
0 = 𝐷𝐹(𝑥1 − 𝑥2). 

WICK’S THEOREM: 

We can now apply Wick’s theorem to the first order term. There 

are 15 ways of finding pairs out of six fields. But since we have 

four times the same field 𝜙(𝑧), only two are really different. Those 

pairs are now simply the propagators: 

𝒢𝑁
1 = −

𝑖𝜆

4!
(3∫𝑑4𝑧 𝐷𝐹(𝑥2 − 𝑥1)𝐷𝐹(𝑧 − 𝑧)𝐷𝐹(𝑧 − 𝑧)

+ 12∫𝑑4𝑧 𝐷𝐹(𝑥2 − 𝑧)𝐷𝐹(𝑥1 − 𝑧)𝐷𝐹(𝑧 − 𝑧)). 

The numbers 3 and 12 are the 15 ways of finding pairs: When 
(𝑥, 𝑦) is a pair, there are three ways of finding pairs of four 𝑧-

fields. When the 𝑥-field forms a pair with a 𝑧-field (4 choices) and 

the 𝑦-field as well (3 choices), the remaining two 𝑧-fields are 

paired with each other (1 choice); makes 12 choices in total. 

FEYNMAN DIAGRAMS AND RULES IN POSITION-SPACE: 

We can interpret the space-time coordinates as vertices (where 

the interactions occur) and the propagators are lines connecting 

the vertices (along which the particles propagate): 

 
We may now connect those diagrams to the formulas by the 

following Feynman rules of 𝜙4-theory in position space: 

 1. Propagator:  = 𝐷𝐹(𝑥 − 𝑦), 

 2. Vertex:   = (−𝑖𝜆) ∫𝑑4𝑧, 

 3. External Point:  = 1. 

 4. Divide by symmetry factors as follows: 

  Factor 2 for lines starting and ending at the same vertex. 

  Factor 2 for equivalent lines like   . 

  Factor 2 for equivalent vertexes. 

This gives us 1/8 for the left and 1/2 for the right diagram, which 

is equal to 3/4! and 12/4! as it should. 

FEYNMAN-RULES IN MOMENTUM SPACE: 

Usually the Feynman rules are expressed 

in terms of momenta, using the integral 

formula of the propagator (see 7.10). For that, we need to assign 

a 4-momentum to each propagator and an arrow for its direction. 

Let’s now postulate the following momentum space rules: 

 1. Internal Propagator: 𝑖 (𝑞2 −𝑚2 + 𝑖𝜖)⁄ , 

 2. Vertex:  −𝑖𝜆(2𝜋)4𝛿(momentum conservation), 

 3. Integrate over undetermined momenta: ∫𝑑4�̅�, 

 4. Divide by symmetry factor. 

Using these rules, we get the following matrix element: 

     𝒮 =
1

2
∫𝑑4�̅�  

𝑖

𝑞2 −𝑚2 + 𝑖𝜖
(−𝑖𝜆(2𝜋)4𝛿(𝑝1 − 𝑝2 + 𝑞 − 𝑞)). 

Of course, we can get this also by direct calculation (>8.1.1). This 

proofs (“by example”) that those Feynman rules are correct. 

DISCONNECTED PARTS: 

So far, we completely ignored our denominator 𝒢𝐷 . We even 

oversaw it, when we compared 𝒮 from our Feynman rules with 

the 𝒮 we calculated in (>8.1.1). 

In general, a Feynman diagram has one part with 

incoming/outgoing particles and one or more disconnected parts. 

It is now possible to show (>7.1.2), that the disconnected parts 

are cancelled by 𝒢𝐷 . We therefore only need to consider 

connected diagrams with incoming/outgoing particles and we 

then can drop the factor 𝒢𝐷 . 
 

8.2 The Feynman Rules of QED 
More advice on how to apply these Feynman rules is given when 

we exemplary apply them to Compton scattering in (>8.3.1). 

LABEL THE DIAGRAM: 

Label external lines with momenta 𝑝1, 𝑝2, … and internal lines 

with momenta 𝑞1, 𝑞2, … and their direction (external: forward in 

time, internal: arbitrary).  

EXTERNAL LINES: 

Incoming Particles: √𝑍2𝑢 Outgoing Particles: √𝑍2�̅� 

Incoming Antiparticles: √𝑍2�̅� Outgoing Antiparticles: √𝑍2𝑣 

Incoming Photons:  √𝑍3𝜀𝜇 Outgoing Photons:            √𝑍3𝜀𝜇 

(up to first order we can set 𝑍 = 𝑍𝑖 = 1, see 7.6) 

VERTEX FACTORS: 

For each vertex include 𝑖𝑔𝛾𝜇, where 𝑔 = √4𝜋𝛼 = 𝑒 > 0. 

(INTERNAL) PROPAGATORS: 

Particles/Antiparticles: 𝑖 (𝑞 − 𝑚 + 𝑖𝜖)⁄  

Photons:   −𝑖𝜂𝜇𝜈 (𝑞
2 + 𝑖𝜖)⁄  

ENERGY-MOMENTUM CONSERVATION: 

For each vertex include (2𝜋)4𝛿(4-momentum conservation), to 

ensure 4-momentum conservation at each vertex. For each 

internal momentum 𝑞𝑖  write ∫𝑑4�̅�𝑖  and integrate (>8.2.1). 

CLOSED FERMION LOOPS: 

Take the trace over closed loops with fermions only and add a 

factor −1. 

DROP 𝜹-FUNCTION FOR THE AMPLITUDE (>8.2.2): 

The structure of the 𝑆-matrix is 𝑆 = 1 + 𝑖𝑇, where 1 is the identity 

operator, which is not interesting. A 𝑆-matrix element always 

contains a 𝛿-function and we write 

⟨{𝑝𝑓}|𝑆|{𝑝𝑖}⟩ =̂ ⟨{𝑝𝑓}|𝑖𝑇|{𝑝𝑖}⟩ = (2𝜋)
4𝛿(𝑝𝑖 − 𝑝𝑓) ⋅ 𝑖ℳ({𝑝𝑓}, {𝑝𝑖}). 

We add a last Feynman rule: Drop the final 𝛿-function of total 

momentum conservation. Then the Feynman rules will give 𝑖ℳ. 
 

8.3 Compton Scattering 
We will again “proof” these Feynman rules “by example”, namely 

the example of Compton scattering. Up to second order, it is given 

in (>8.3.1) how Feynman rules are applied to get the S-matrix 

element. Then, in (>8.3.2) a lengthy, rigorous calculation is 

performed, which gives the same result. 



9 Cross Sections and Decay Rates 
 

9.1 Scattering Probability 
S-MATRIX ELEMENT AND SCATTERING PROBABILITY: 

Recalling 7.4 and 7.5, the Feynman rules give us the 𝑆-matrix 

element 

𝑆𝑓𝑖 = ⟨𝛽+|𝛼−⟩ = ⟨{𝑝𝑓}+|{𝑝𝑖}−⟩, 

where  

|{𝑝𝑖}−⟩ = |𝛼−〉 = lim
𝑡→−∞

𝑎𝑝1
† (𝑡)⋯𝑎𝑝𝑛

† (𝑡) |Ω⟩, 

|{𝑝𝑓}+⟩ = |𝛽+〉 = lim
𝑡→∞

𝑎
𝑝1
′
† (𝑡)⋯𝑎

𝑝𝑛
′
† (𝑡) |Ω⟩ 

are the initial/final states, {𝑝𝑖} = {𝑝1, 𝑝2, … } are the momenta of 

the incoming particles and {𝑝𝑓} = {𝑝1
′ , 𝑝2

′ , … } of the outcoming 

particles. 

The probability for such an event is then the absolute squared: 

𝑤𝑓𝑖 = |𝑆𝑓𝑖|
2
. 

WAVE PACKAGES: 

The momenta of the incoming and outgoing particles are not 

determined sharply. Rather, we should describe the incoming 

particles as a wave package 

|𝑖⟩ = ∫{𝑑𝑝𝑖}(Π𝑛𝑓𝑛(𝑝𝑛))|{𝑝𝑖}−⟩, 

where {𝑑𝑝𝑖} = 𝑑𝑝1𝑑𝑝2⋯ and 𝑓𝑛 is the form of the wave-package 

of the 𝑛-th particle; we call it “wave function”. Π𝑛 is the product 

symbol. Of course, we should describe the outgoing particles in 

the same way (denoting this state as |𝑓〉). 

We can show that the wave function in position space 

𝑓(𝑥) ≔ ∫𝑑𝑝 𝑒−𝑖𝑝⋅𝑥𝑓(𝑝) 

gives us the current 𝑗𝜇 = 𝑖𝑓∗𝜕𝜇𝑓, the zeroth component of which 

can be interpreted as a probability density (>9.1.1). 

SCATTERING PROBABILITY OF WAVE PACKAGES: 

Using the wave packages for the “in” state |𝑖⟩ and an arbitrary 

“out” state |𝑓⟩, we can derive the formula (>9.1.2) 

𝑑4𝑤𝑓𝑖

𝑑3𝑥 𝑑𝑡
= (2𝜋)4𝛿(𝑝𝑓 − �̅�𝑖)   |ℳ({𝑝𝑓}, {�̅�𝑖})|

2
   ∏|𝑓𝑖(𝑥)|

2

𝑖

, 

where we used the following quantities: 

 – 𝑑4𝑤𝑓𝑖 𝑑
3𝑥𝑑𝑡⁄  is the scattering probability per volume and 

  time element from a state |𝑖⟩ to |𝑓⟩. 

 – 𝑝𝑓/𝑝𝑖  is the sum of all outgoing/incoming momenta. 

 –  The bar in �̅�𝑛 denotes the average over the range of the  

  corresponding wave package 𝑓𝑛(𝑝𝑛). 

 – ℳ is the 𝑆-matrix element, i.e. the expression we get from  

  the Feynman rules, but excluding the factor 

  (2𝜋)4𝛿(𝑝𝑓 − 𝑝𝑖); this factor obviously is written there  

  already explicitly. 

 – 𝑓𝑖(𝑥) is the wave function as defined above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.2 The Cross Section 
Let’s define the differential cross section as 

𝜎 =
#probability of scattering/time/volume

incident flux density ⋅ #scatterers/volume
. 

Let’s assume we have two incoming particles with momenta 

𝑝1, 𝑝2. Those momenta are actually the average momenta �̅�𝑖  over 

the range of a wave package, but we will omit the bar here. We 

find (>9.2.1) 

𝑑𝜎 =
1

4√(𝑝1 ⋅ 𝑝2)
2 −𝑚1

2𝑚2
2
|ℳ({𝑝𝑓}, 𝑝1, 𝑝2)|

2
 𝑑𝜙𝑛. 

Here, the 1/4√⋯-term is called flux factor and 𝑑𝜙𝑛 is the Lorentz 

invariant phase space measure (LIPS) 

𝑑𝜙𝑛 = {𝑑𝑝𝑓} (2𝜋)
4𝛿(𝑝𝑓 − 𝑝1 − 𝑝2), 

where {𝑑𝑝𝑓} = 𝑑𝑝3𝑑𝑝4⋯ are the differential of the final state 

momenta and 𝑝𝑓 = ∑ 𝑝𝑛𝑛≥3  is their sum. 
 

9.3 The Decay Rate 
The decay rate Γ appears in the decay law as 

𝑁(𝑡) = 𝑁(0)𝑒−Γ𝑡     ⟹      Γ = −
�̇�

𝑁
= −

decay probability

probability density
. 

We can give this rate as (>9.3.1) 

Γ = −∫𝑑𝜙𝑛
1

2𝑝𝑖
0 |ℳ({𝑝𝑓}, 𝑝𝑖)|

2
,     𝑑𝜙𝑛 = {𝑑𝑝𝑓} (2𝜋)

4𝛿(𝑝𝑓 − 𝑝𝑖), 

where 𝑝𝑖  is the momentum of the decaying particle and 𝑝𝑓 is the 

sum (an {𝑝𝑓} the set) of the final particle. 𝑝𝑖
0 is the energy 

component of the decaying particle.  



10 Compton Scattering 
 

10.1 Definition of Compton Scattering 
Compton Scattering is the elastic scattering between an electron 

and a photon. That is, we start with an electron and a photon and 

also end with those two particles, but their momenta and energies 

may have changed due to the QED interaction. In general, also 

spins 𝛼 and polarizations 𝜆 can change: 

𝑒−(𝑝1, 𝛼1) + 𝛾(𝑘1, 𝜆1)      ⟶      𝑒−(𝑝2, 𝛼2) + 𝛾(𝑘2, 𝜆2). 

Up to second order, the Feynman diagrams for that process look 

like 

 
We now want to go the long way from calculating the amplitude 

to actually get the cross section into a form in terms of 

measurable quantities.  
 

10.2 The Scattering Amplitude 
We already calculated the scattering amplitude for Compton 

scattering in 8.3 – once using Feynman rules (>8.3.1) and once by 

a rigorous calculation almost from first principle (>8.3.2). Either 

way, the result was, 

     𝑖ℳ = −𝑔2�̅�2 (𝜀2
𝑖

(𝑝1 + 𝑘1) − 𝑚 + 𝑖𝜖
𝜀1 

1 + 𝜀1
𝑖

(𝑝1 − 𝑘2) − 𝑚 + 𝑖𝜖
𝜀2)𝑢1. 

Here, we used the abbreviations 𝑢𝑖 ≔ 𝑢𝛼𝑖𝑝𝑖 and 𝜀𝑖 ≔ 𝜀𝜆𝑖𝑘𝑖 . 

Note, that we added the spin and polarization dependence 

explicitly here and we dropped the 𝛿-function of total 4-

momentum conservation, because ℳ is the amplitude, not the 𝑆-

matrix element (see 8.2).  
 

10.3 Sum over Spins and Polarizations 
Experiments often do not measure the spin and polarization 

configuration of the particles. We therefore must average over the 

incoming and sum over the outgoing spins and (physical) 

polarizations: 

|ℳ|2̅̅ ̅̅ ̅̅ ̅ ≔
1

2
∑

1

2
∑ ∑ |ℳ|2

𝛼2,𝜆2𝜆1𝛼1

. 

SUM OVER ELECTRON SPINS: 

If we conduct the sum over the 𝛼’s, we find (>10.3.1) 

|ℳ|2̅̅ ̅̅ ̅̅ ̅ 

=
𝑔4

4
∑ Tr(𝑝2 +𝑚) (𝜀2

1

(𝑝1+𝑘1)−𝑚+𝑖𝜖
𝜀1 + 𝜀1

1

(𝑝1−𝑘2)−𝑚+𝑖𝜖
𝜀2)𝜆1,𝜆2

  

(𝑝1 +𝑚) (𝜀1
1

(𝑝1+𝑘1)−𝑚+𝑖𝜖
𝜀2 + 𝜀2

1

(𝑝1−𝑘2)−𝑚+𝑖𝜖
𝜀1).  

SUM OVER THE PHOTON POLARIZATIONS: 

The sum over the (physical) polarization yields (>10.3.2): 

|ℳ|2̅̅ ̅̅ ̅̅ ̅ 

=
𝑔4

4
Tr  (𝑝2 +𝑚) (𝛾

𝜇 1

(𝑝1+𝑘1)−𝑚+𝑖𝜖
𝛾𝜈 + 𝛾𝜈

1

(𝑝1−𝑘2)−𝑚+𝑖𝜖
𝛾𝜇)  

(𝑝1 +𝑚) (𝛾𝜈
1

(𝑝1+𝑘1)−𝑚+𝑖𝜖
𝛾𝜇 + 𝛾𝜇

1

(𝑝1−𝑘2)−𝑚+𝑖𝜖
𝛾𝜈).  

 
 
 
 
 
 

10.4 Bringing the γ-Matrices into the Numerator 
The calculations in this section are given in (>10.4.1) in more 

detail. Using the standard trick 
1

𝑝 − 𝑚 + 𝑖𝜖
=

𝑝 +𝑚

𝑝2 −𝑚2 + 𝑖𝜖
 

as well as (𝑝 ± 𝑘)2 −𝑚2 = ±2𝑝 ⋅ 𝑘, we get 

|ℳ|2̅̅ ̅̅ ̅̅ ̅ =
𝑔4

4
Tr  (𝑝2 +𝑚) (𝛾𝜇

𝑝1+𝑘1+𝑚

2𝑝1⋅𝑘1+𝑖𝜖
𝛾𝜈 + 𝛾𝜈

𝑝1−𝑘2+𝑚

−2𝑝1⋅𝑘2+𝑖𝜖
𝛾𝜇)  

(𝑝1 +𝑚) (𝛾
𝜈 𝑝1+𝑘1+𝑚

2𝑝1⋅𝑘1+𝑖𝜖
𝛾𝜇 + 𝛾𝜇

𝑝1−𝑘2+𝑚

−2𝑝1⋅𝑘2+𝑖𝜖
𝛾𝜈).  

This can be simplified further by using some general 𝛾-matrix 

identities (>10.4.1). In the end, we will find 

|ℳ|2̅̅ ̅̅ ̅̅ ̅ =
𝑔4

4
Tr  (𝑝2 +𝑚)(𝛾𝜇

2𝑝1𝜈 + 𝑘1𝛾𝜈
2𝑝1 ⋅ 𝑘1 + 𝑖𝜖

+ 𝛾𝜈
2𝑝1𝜇 − 𝑘2𝛾𝜇

−2𝑝1 ⋅ 𝑘2 + 𝑖𝜖
) 

(𝑝1 +𝑚)(
2𝑝1

𝜈 + 𝛾𝜈𝑘1
2𝑝1 ⋅ 𝑘1 + 𝑖𝜖

𝛾𝜇 +
2𝑝1

𝜇
− 𝛾𝜇𝑘2

−2𝑝1 ⋅ 𝑘2 + 𝑖𝜖
𝛾𝜈). 

 

10.5 Get Rid of the γ-Matrices 
If we multiply out the large brackets of the last equation in 10.4, 

we get four terms, the first one of which is ∼ 1 (2𝑝1 ⋅ 𝑘1)
2⁄  for 𝜖 →

0. Using 𝛾-matrix relations like Tr 𝑎 𝑏 = 4𝑎 ⋅ 𝑏 and that traces 

over odd number of matrices vanish, we can get rid of all the 𝛾-

matrices and for example the ∼ 1 (2𝑝1 ⋅ 𝑘1)
2⁄ -term reads 

8𝑔4

(2𝑝1 ⋅ 𝑘1)
2
(−𝑚2(𝑝2 ⋅ 𝑝1 + 𝑝2 ⋅ 𝑘1) + (𝑘1 ⋅ 𝑝1)(𝑝2 ⋅ 𝑘1)

+ 2𝑚2(𝑚2 + 𝑝1 ⋅ 𝑘1)). 

Four all four terms, this is worked out in (>10.5.1) to (>10.5.4). 
 

10.6 Mandelstam Variables 
GENERAL DEFINITION: 

Now, ∑|ℳ|2 contains a lot of dot products of momenta, but some 

of them are equal. To get rid of this redundancy, we introduce the 

so-called Mandelstam variables 

𝑠 ≔ (𝑝1 + 𝑘1)
2 = (𝑝2 + 𝑘2)

2, 

𝑡 ≔ (𝑝1 − 𝑝2)
2 = (𝑘1 − 𝑘2)

2, 

𝑢 ≔ (𝑝1 − 𝑘2)
2 = (𝑝2 − 𝑘1)

2, 

where the equal signs hold because of momentum conservation. 

It always holds that the sum of the three Mandelstam variables is 

the sum of all squared masses involved (>10.6.1): 

𝑠 + 𝑡 + 𝑢 = 𝑝1
2 + 𝑝2

2 + 𝑘1
2 + 𝑘2

2. 

(For the sign of the Mandelstam variables, see also (>13.3.8)) 

DOT PRODUCTS IN TERMS OF MANDELSTAM VARIABLES: 

The dot products can now be given as (>10.6.2) 

          2𝑝1 ⋅ 𝑘1 = 2𝑝2 ⋅ 𝑘2 = 𝑆,          2𝑝1 ⋅ 𝑘2 = 2𝑝2 ⋅ 𝑘1 = −𝑈, 

          2𝑝1 ⋅ 𝑝2 = 𝑆 + 𝑈 + 2𝑚
2,        2𝑘1 ⋅ 𝑘2 = 𝑆 + 𝑈, 

where 𝑆 ≔ 𝑠 − 𝑚2 and 𝑈 ≔ 𝑢 −𝑚2. 

COMPTON SCATTERING AMPLITUDE: 

We can now give the Compton scattering amplitude in terms of 

Mandelstam variables (or, as we do it here, in terms of 𝑆 and 𝑈). 

What we find is (>10.6.3): 

|ℳ|2̅̅ ̅̅ ̅̅ ̅ = 2𝑔4 (4𝑚4 (
1

𝑆
+
1

𝑈
)
2

+ 4𝑚2 (
1

𝑆
+
1

𝑈
) −

𝑈

𝑆
−
𝑆

𝑈
). 

MANDELSTAM VARIABLES IN THE CENTER OF MASS FRAME: 

Now that we have this neat formula, we need to choose a 

reference frame to go on. In the center of mass frame, we can 

choose (>10.6.4) 

𝑘1
𝜇
= 𝑘1

0(1, 0, 0, 1),     𝑝1
𝜇
= 𝑝1

0(1, 0, 0, −𝛽),     𝛽 = 𝑘1
0/𝑝1

0 

and write 

𝑘2
𝜇
= 𝑘1

0(1, sin 𝜃 , 0, cos 𝜃),     𝑝2
𝜇
= 𝑝1

0(1, −𝛽 sin 𝜃 , 0, −𝛽 cos 𝜃). 

We can now express 𝑢 as 

𝑢 = 𝑚2 −
𝑠2 −𝑚4

2𝑠
(1 + 𝛽 cos 𝜃), 

where now 𝑠 = (𝑝1
0 + 𝑘1

0)2 and 𝛽 is determined by the incoming 

particles and only 𝜃 depends on the outgoing particles.  



11 The Optical Theorem and the 

Ward-Takahashi Identity 
 

11.1 The Principle of the Optical Theorem 
We know from (>7.4.1) that the 𝑆-matrix is unitary, i. e. 𝑆†𝑆 = 1, 

and from (>8.2.2) that we can write 𝑆 = 1 + 𝑖𝑇, where all the 

interesting stuff is preserved in 𝑇. Thus, we find (>11.1.1) 

−𝑖(𝑇 − 𝑇†) = 𝑇†𝑇. 

We can now wrap this equation into matrix elements with multi-

particle state ⟨{𝑝𝑖
′}| and |{𝑝𝑖}⟩ and plug in a complete set of 

intermediate states on the ride hand side. Then we can use 
⟨⋯ |𝑇|⋯ ⟩ ∼ 𝛿(⋯ )ℳ from 8.2 to give this equation in terms of 

matrix elements ℳ (>11.1.2): 

−𝑖 (ℳ{𝑝𝑖},{𝑝𝑖
′} −ℳ{𝑝𝑖

′},{𝑝𝑖}
∗ )

= ∑∫{𝑑�̃�𝑖}𝑛 (2𝜋)
4𝛿(𝑝 − 𝑞) ℳ

{𝑝𝑖
′},{𝑞𝑖}𝑛

∗ ℳ{𝑝𝑖},{𝑞𝑖}𝑛

∞

𝑛=1

. 

THE OPTICAL THEOREM FOR FORWARD SCATTERING: 

In the important special case of forward scattering, i. e. 𝑝𝑖
′ = 𝑝𝑖 , 

we obtain (>11.1.3) 

2 Imℳ(𝑝1, 𝑝2 → 𝑝1, 𝑝2)

= ∑∫{𝑑�̃�𝑖}𝑛 (2𝜋)
4𝛿(𝑝 − 𝑞) |ℳ(𝑝1 , 𝑝2 → {𝑞𝑖}𝑛)|

2

∞

𝑛=1

= 4√(𝑝1 ⋅ 𝑝2)
2 −𝑚1

2𝑚2
2 𝜎tot(𝑝1, 𝑝2 → anything). 

In the centre of mass frame, the root becomes √⋯ = |𝑝|𝐸cm, 

where 𝐸cm = √𝑠 is the total centre of mass energy and 𝑝 is the 

momentum of one of the two particles (>11.1.4).  
 

11.2 Branch Cut and Discontinuity 
REAL AND COMPLEX MATRIX ELEMENTS: 

The Feynman rules of 𝜙4-theory as well as of QED yield a factor 𝑖 

for each internal propagator and each vertex. For each loop, we 

get an additional factor 𝑖 from Wick rotation. Thus, one can 

easily check, that any Feynman diagram will always have an odd 

number of 𝑖’s, such that its contribution to 𝑖ℳ is always purely 

imaginary and to ℳ purely real – unless some denominators 

vanish, so that the 𝑖𝜖’s become relevant. Thus, a Feynman 

diagram yields an imaginary part for ℳ only when virtual 

particles in the diagram go on-shell, i. e. they satisfy 𝑝2 = 𝑚2.  

DISCONTINUITY: 

If we consider the matrix element ℳ(𝑠) as a function of the 

Mandelstam variable 𝑠, ℳ(𝑠) will be real for 𝑠 < 𝑠0, where 𝑠0 is 

the threshold energy of the lightest multiparticle state (>11.2.1). 

For 𝑠 ≥ 𝑠0, ℳ(𝑠) is ill defined; it has a branch cut. If we now 

analytically continue ℳ(𝑠) in the complex plane, that is for 𝑠 ∈

ℂ, we find for 𝑠 < 𝑠0, where ℳ ∈ ℝ, (>11.2.2) 

ℳ(𝑠) = (ℳ(𝑠∗))
∗
. 

Both sides of this equation can be analytically continued to the 

complex plane independently and we find for all 𝑠R ∈ ℝ 

Reℳ(𝑠R + 𝑖𝜖) = Reℳ(𝑠R − 𝑖𝜖), 

Imℳ(𝑠R + 𝑖𝜖) = − Imℳ(𝑠R − 𝑖𝜖). 

Obviously, there is a discontinuity (>11.2.2) 

Discℳ(𝑠R) = 2𝑖 Imℳ(𝑠R + 𝑖𝜖). 

This formula is useful, since it is often easier to calculate 

discontinuities than imaginary parts of diagrams. 

 
 
 
 
 
 

11.3 The Optical Theorem for ϕ⁴-Theory 
DIAGRAM AND AMPLITUDE: 

We will now check if the Optical Theorem formula from 11.1 

holds for 𝜙4-theory. As stated in 11.2, ℳ has an imaginary part 

only if the 𝑖𝜖 of propagators are relevant. This is only the case for 

higher-order diagrams; consider, then, the order 𝜆2 diagram 

 
Feynman rules give us the amplitude (>11.3.1) 

𝑖 𝛿ℳ =
𝜆2

2
∫𝑑4�̅�

1

(𝑝 2⁄ + 𝑞)2 −𝑚2 + 𝑖𝜖

1

(𝑝 2⁄ − 𝑞)2 −𝑚2 + 𝑖𝜖
. 

PROPAGATORS BECOME DELTA-FUNCTIONS FOR 

DISCONTINUITY: 

It is not difficult to compute the integral with Feynman 

parameters, but we will move on differently. After calculating 

the four poles of the amplitude (>11.3.2) 

𝑞0 = 𝑞∓±′
0 ≔ ∓𝑝0 2⁄ ±′ (𝐸�⃗⃗� − 𝑖𝜖) 

we find that, if we are interested into the discontinuity only, we 

can replace the first (>11.3.3) and also the second (>11.3.4) 

propagator by a 𝛿-function 
1

(𝑝 2⁄ + 𝑞)2 −𝑚2 + 𝑖𝜖
→ −2𝜋𝑖 𝛿((𝑝 2⁄ + 𝑞)2 −𝑚2). 

That is, the discontinuity can be given as 

𝑖 Discℳ(𝑝0)

= (−2𝜋𝑖)2
𝜆2

2
∫𝑑4�̅�𝛿((𝑝 2⁄ + 𝑞)2 −𝑚2)𝛿((𝑝 2⁄ + 𝑞)2 −𝑚2). 

CHANGE FROM 𝒒 TO 𝒌𝟏,𝒌𝟐-DESCRIPTION: 

If we use independent momenta 𝑘1,2 = 𝑝 2⁄ ± 𝑞, the amplitude 

reads (>11.3.5) 

𝑖 𝛿ℳ =
𝜆2

2
∫𝑑4�̅�1 𝑑

4�̅�2
(2𝜋)4𝛿(𝑘1 + 𝑘2 − 𝑝)

(𝑘1
2 −𝑚2 + 𝑖𝜖)(𝑘2

2 −𝑚2 + 𝑖𝜖)
. 

If we now replace 
1

𝑘𝑖
2 −𝑚2 + 𝑖𝜖

→ −2𝜋𝑖 𝛿(𝑘𝑖
2 −𝑚2) 

we end up with, using Discℳ = 2𝑖 Imℳ (>11.3.6) 

2 Imℳ =
𝜆2

2
∫𝑑�̃�1 𝑑�̃�2 (2𝜋)

4𝛿(𝑘1 + 𝑘2 − 𝑝). 

WHY THIS RESULT PROOFS THE OPTICAL THEOREM: 

Up to order 𝜆2 on both side of the equation, this formula is 

equivalent to the formula for forward scattering from 11.1. The 

left-hand side is obvious: In both cases, we have 2 Imℳ. The 

right-hand side is less obvious: Up to order 𝜆2, the squared 

amplitude |ℳ| only contains leading order processes. The 

squared amplitude of the leading order 2 → 2-process in 𝜙4-

theory is simply |ℳ|2 = 𝜆2 (see Feynman rules in 8.1) and to 

this order only two final particles are possible (thus, only 𝑛 = 2 

in the sum over 𝑛 contributes). Thus, we can write our result 

from above as 

2 Imℳ =
1

2
∫𝑑�̃�1 𝑑�̃�2 (2𝜋)

4𝛿(𝑘1 + 𝑘2 − 𝑝) |ℳ|2. 

The factor 1/2 on the right-hand side is simply a symmetry 

factor for identical bosons in the final state. Thus, this formula 

corresponds directly to the one from 11.1. 

 
 
 
 
 
 
 
 
 
 



11.4 Cutkosky Cutting Rules 
CUTTING THRUOGH DIAGRAMMS:  

When we replace the propagators by 𝛿-functions as in 11.3 and 

integrate over the loop momentum, only the momentum region 

where both 𝛿-functions are simultaneously fulfilled contribute. 

The 𝛿-functions put the momenta on shell. Thus, we can cut 

though the loop and tread that in some sense as non-virtual 

particles, when calculating discontinuities: 

 
where 𝑑𝜙2 = 𝑑�̃�1 𝑑�̃�2 (2𝜋)

4 𝛿(𝑘1 + 𝑘2 − 𝑝). After manually 

adding the symmetry factor 1/2, this is the diagrammatic form 

of the last formula in 11.3. 

GENERAL CUTKOSKY CUTTING RULES: 

Cutkosky proved that this method for computing discontinuities 

(and thereby imaginary parts) is completely general: Whenever, 

in the region of integration over a loop momentum, two 

propagators can simultaneously go on shell one can cut through 

the diagram in all possible ways. Mathematically, cutting means 

to replace the propagator by a 𝛿-function, 
1

𝑝2 −𝑚2 + 𝑖𝜖
→ −2𝜋𝑖 𝛿(𝑝2 −𝑚2) 

and performing the loop momentum integrals. If there is more 

than one cut, the contributions of all cuts need to be summed up. 

Using these rules, it is possible to prove the optical theorem to 

all orders in perturbation theory.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11.5 The Ward-Takahashi Identity 
INTRODUCTION: 

Consider an amplitude ℳ(𝑘) for some arbitrary process with 

given initial and final particles involving an external photon 𝛾(𝑘) 

with momentum 𝑘. The initial and final particles are not 

necessarily on-shell; thus, we will describe them with 

propagators like internal particles. 

Let ℳ0 be the amplitude of the same process but without the 

photon 𝛾(𝑘). Of course, many diagrams contribute to both ℳ(𝑘) 

and ℳ0. However, if we sum up all diagrams contributing to ℳ0 

and then sum over all possible points of insertion of 𝛾(𝑘) in each 

of these diagrams, we obtain ℳ(𝑘): 

ℳ(𝑘) = ∑ ∑(Diagrams of ℳ0)

Possible
insertions of 𝛾(𝑘)

. 

The external photon 𝛾(𝑘) will contribute in terms of a 

polarization vector 𝜀𝜇(𝑘), hence we can write ℳ =∶ 𝜀𝜇ℳ
𝜇, 

where ℳ𝜇  is just the same as ℳ but without 𝜀𝜇. If we replace 

this polarization vector with its momentum on both side of the 

equation, we can write 

ℳ(𝑘)|𝜀→𝑘 = 𝑘𝜇ℳ
𝜇 = ∑ ∑(Diagrams of ℳ0)|

𝜀→𝑘
Possible

insertions of 𝛾(𝑘)

. 

The result of the evaluation of the double sum on the right-hand 

side will be the Ward-Takahashi identity. 

What are the possible insertions of 𝛾(𝑘)? Certainly, it needs to 

be attached to an electron line. In QED diagrams, electron lines 

either connect two external electrons or are closed loops. 

INSERTION ON A LINE BETWEEN EXTERNAL ELECTRONS: 

Let’s attach 𝛾(𝑘) to a line of a diagram of ℳ0 connecting two 

external electrons. We need to sum over all possible insertion 

points on that line. What we find can diagrammatically be given 

as (>11.5.1) 

 
Most terms of the sum cancel with other terms and only two 

terms are left. Here, 𝑞 is the momentum 𝑝 plus the sum of the 

momenta of all the attached photons, including our external 

photon 𝛾(𝑘). Those remaining terms stem from the insertions at 

the two ends of the photon line.  

INSERTION ON ELECTRON LOOP: 

If the only non-vanishing terms on a straight photon line stem 

from the two end points, it’s not hard to imagine, that all terms 

will cancel if the electron line is a closed loop. This is indeed, 

what happens (without proof). Thus, the part of the double sum, 

where 𝛾(𝑘) is attached to an electron loop, will not contribute. 

THE WARD-TAKAHASHI IDENTITY: 

The sum above includes all insertion points of one electron line 

of a diagram of ℳ0. The sum over all diagrams of ℳ0 just 

returns ℳ0; what remains is the sum over all electron lines 

connecting external electrons: 

𝑘𝜇ℳ
𝜇 = −𝑔 ∑ (ℳ0(𝑞𝑖 → 𝑞𝑖 − 𝑘) −ℳ0(𝑝𝑖 → 𝑝𝑖 + 𝑘))

electron
line 𝑖

, 

where 𝑞𝑖  is the outgoing and 𝑝𝑖  the incoming momentum of the 

electron line 𝑖. 

THE WARD IDENTITY: 

If the initial and final momenta 𝑝𝑖 , 𝑞𝑖  of the diagram are on-shell, 

i. e. ℳ,ℳ0 are amplitudes for complete physical processes, the 

right-hand side vanishes and we are left with the Ward identity 

(>11.5.2) 

𝑘𝜇ℳ
𝜇 = 0. 

Recall that ℳ𝜇  is anything of the total amplitude except for the 

polarization vector of the external photon with momentum 𝑘. 



12 Loop Integrals, Regularization 
 

12.1 General Form of a Loop Diagram 
The perturbative expansion of any process contains Feynman 

diagrams with loops from the next leading order (NLO) onwards. 

Recall from the Feynman rules in 8.1 and 8.2 that loops come with 

integrals over the loop momenta. 

In principle, the integral over the loop momentum contains only 

quantities that depend on the loop momentum – obviously. 

According to Feynman rules, a loop integral has the structure 

∫𝑑4�̅� V P V P⋯, 

where V is a vertex factor and P a propagator. For example, the 

loop integral part of the diagram 

                      looks like    ∫ 𝑑4�̅� 𝛾𝜇
𝑖(𝑘 + 𝑚)

𝑘2 −𝑚2 + 𝑖𝜖
𝛾𝜈

−𝑖𝜂𝜇𝜈
(𝑝 − 𝑘)2 + 𝑖𝜖

 

Obviously, a loop integral is really complicated. However, it can 

be evaluated, using the following technics one after the other: 

 – Feynman parameters (for the denominator, 12.2) 

 – Dirac algebra (in the numerator, 12.3) 

 – Wick rotation (12.4) 

 – Regularization (12.5, 12.6, 12.7) 

Will we now formally introduce these technics in the following 

sections, to get a good overview. Probably, this overview will not 

be familiar or meaningful until we apply those formalisms to 

compute actual loop integrals in the chapter ahead. We will make 

some assumptions here about the behaviour of loop diagrams, 

that will prove to be true when we are going to do actual 

computations.  
 

12.2 Feynman Parameters 
INTRODUCING FEYNMAN PARAMETERS: 

The denominator inside the loop integral is simply the product of 

the denominators of all the propagators of the loop; that is Π𝑖𝐴𝑖
𝑎𝑖 , 

where 𝐴𝑖  are the denominator of the propagators. Surprisingly, 

the following mathematical identity turns out to be useful: 

∏
1

𝐴𝑖
𝑎𝑖

𝑛

𝑖=1

=
Γ(∑ 𝑎𝑖

𝑛
𝑖=1 )

∏ Γ(𝑎𝑖)
𝑛
𝑖=1

∫ 𝑑𝑥1⋯𝑑𝑥𝑛
𝛿(1 − ∑ 𝑥𝑖

𝑛
𝑖=1 )∏ 𝑥𝑖

𝑎𝑖−1𝑛
𝑖=1

(∑ 𝐴𝑖𝑥𝑖
𝑛
𝑖=1 )∑ 𝑎𝑖

𝑛
𝑖=1

1

0

, 

where the 𝑥𝑖  are called Feynman parameters, 𝑎𝑖 ∈ ℝ and Γ is the 

Γ-function (we won’t proof this formula). That is, we are going to 

introduce these Feynman parameters into our loop integral 

formulae. For loops with two and three propagators, this formula 

reduces to (>12.2.1) 

      
1

𝐴𝐵
   =    ∫ 𝑑𝑥

1

(𝑥𝐴 + (1 − 𝑥)𝐵)2

1

0

,                  

1

𝐴𝐵𝐶
   =    2∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧

𝛿(1 − 𝑥 − 𝑦 − 𝑧)

(𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧)3

1

0

. 

SHIFTING THE INTEGRATION VARIABLE: 

After introducing Feynman parameters, we can usually bring the 

denominator of a loop integral ∫𝑑4�̅� ⋯ into the form 
1

(𝑙2 − Δ + 𝑖𝜖)𝑎
 

by shifting the integration variable 𝑘𝜇 → 𝑙𝜇 +⋯ in a suitable way. 

That is, 𝑙𝜇  will be the new integration variable. Δ will be 

independent of 𝑙, but can be a function of the Feynman 

parameters and other (external) squared momenta 𝑝2, that are 

independent of 𝑙𝜇  (of course, also the numerator will be changed 

by this shift and of course there will still be an integral over 𝑙𝜇  and 

one over the Feynman parameters). 

 
 
 
 
 

12.3 Dirac Algebra 
The numerator of loop integrals contains several Dirac matrices 

inside a trace. Some of them are contracted to other 𝛾-matrices, 

others are not. To simplify the Dirac structure, let us develop a set 

of helpful formulas. To be completely general, let us to this in 𝑑 

instead of four dimensions (yes, we actually are going to need 

this). Let us also define 

𝑑 = 4 − 𝜖, 

such that the limit 𝑑 → 4 corresponds to 𝜖 → 0. 

CONTRACTIONS OF 𝜸-MATRICES: 

The defining property of 𝛾-matrices (also in 𝑑 dimensions) is 
{𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇𝜈 , 

from which we find (>12.3.1) 
              𝛾𝜇𝛾𝜇 = 4 − 𝜖,                                

          𝛾𝜇𝛾𝜈𝛾𝜇 = (𝜖 − 2)𝛾𝜈 ,                        

     𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜇 = 4𝜂𝜌𝜈 − 𝜖𝛾𝜈𝛾𝜌,                

𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎𝛾𝜇 = −2𝛾𝜎𝛾𝜌𝛾𝜈 + 𝜖𝛾𝜈𝛾𝜌𝛾𝜎 .

 

TRACES OF 𝜸-MATRICES: 

Traces of an odd number of 𝛾-matrices vanish (>12.3.2): 

Tr(𝛾1
𝜇
𝛾2
𝜈⋯𝛾𝑛

𝜌
) = 0     for odd 𝑛. 

Traces of an even number 𝛾-matrces can always be reduces to a 

trace of the 𝑑-dimensional unit matrix 𝕀𝑑 , for example (>12.3.3) 

Tr(𝛾𝜇𝛾𝜈) = 𝜂𝜇𝜈 Tr 𝕀𝑑 ,                                                             

Tr(𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎) = (𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜌𝜂𝜈𝜎 + 𝜂𝜇𝜎𝜂𝜈𝜌) Tr 𝕀𝑑 , 

where 

Tr 𝕀𝑑 = {
2, for 𝑑 = 2, 3,
4, for 𝑑 = 4.    

 

INTEGRALS OF FOUR-MOMENTA: 

For an arbitrary function 𝐷(𝑙2), we find (>12.3.4) 

∫𝑑𝑑𝑙 ̅ 
𝑙𝜇

𝐷(𝑙2)
= 0,          ∫ 𝑑𝑑𝑙 ̅

𝑙𝜇𝑙𝜈

𝐷(𝑙2)
=
1

𝑑
𝜂𝜇𝜈 ∫𝑑𝑑𝑙 ̅

𝑙2

𝐷(𝑙2)
. 

SPINOR IDENTITIES: 

For the sake of the overview, let us also restate the following 

common identities for 𝑢 and 𝑣 spinors: 

�̅�𝑝(𝑝 − 𝑚) = (𝑝 −𝑚)𝑢𝑝 = (𝑝 + 𝑚)𝑣𝑝 = �̅�𝑝(𝑝 +𝑚) = 0, 

Σspins𝑢𝑝�̅�𝑝 = 𝑝 +𝑚,          Σspins𝑣𝑝�̅�𝑝 = 𝑝 −𝑚. 

GORDON IDENTITIES: 

Although not directly necessary for loop integrals, this is a good 

place to also state the Gordon identities (>12.3.5) 

�̅�𝑘((𝑘 ∓ 𝑝)
𝜇𝑋 + 𝑖𝜎𝜇𝜈(𝑘 ± 𝑝)𝜈𝑋)𝑢𝑝

= 𝑚{
�̅�𝑘(𝛾

𝜇 ∓ 𝛾𝜇)𝑢𝑝, for 𝑋 = 𝕀

�̅�𝑘(𝛾
𝜇𝛾5 ± 𝛾𝜇𝛾5)𝑢𝑝, for 𝑋 = 𝛾5

. 

If we have 𝑣 spinors instead of 𝑢 spinors, the right-hand side 

receives an additional global minus sign. 
 

12.4 Wick Rotation 
After the procedures 12.2 and 12.3 the loop integral will look like 

∫𝑑𝑥1⋯𝑑𝑥𝑛 𝛿(1 − Σ𝑖=1
𝑛 𝑥𝑖)  ∫ 𝑑

4𝑙 ̅
𝑓(𝑙2)

(𝑙2 − Δ + 𝑖𝜖)𝑎
, 

where 𝑓, Δ can contain Feynman parameters and 

other momenta independent of 𝑙𝜇 . Since the 

integrand depends only on 𝑙2 (but not 𝑙𝜇), 

we could evaluate this integral with 

four-dimensional spherical coordinates, if 

it were not for the minus signs in the 

Minkowski metric.  

However, we can introduce new Euclidian integration variables 𝑙𝐸  

by the substitution (>12.4.1) 

𝑙0 = 𝑖𝑙𝐸
0 ,            𝑙 = 𝑙𝐸          ⟹           𝑙2 = −𝑙𝐸

2 ,          𝑑4𝑙 = 𝑖 𝑑4𝑙𝐸 . 

𝑙𝐸  is a Euclidian four-vector; the momentum integral becomes 

∫𝑑4𝑙 ̅
𝑓(𝑙2)

(𝑙2 − Δ + 𝑖𝜖)𝑎
=

𝑖

(−1)𝑎
∫𝑑4𝑙�̅�

𝑓(−𝑙𝐸
2)

(𝑙𝐸
2 + Δ)𝑎

, 

which now can be evaluated by spherical coordinates. 

 



12.5 The Idea of Regularization 
DIVERGENT INTEGRALS: 

Consider the momentum integral after the Wick rotation in the 

end of 12.4. Turning this integral into spherical coordinates 

means the replacement 𝑑4𝑙𝐸 → Ω4𝑙𝐸
3  𝑑𝑙𝐸 , where Ω4 = const. is the 

surface of a four-dimensional unit sphere. Assuming that 𝑓 is a 

polynomial function, then the integral is of the form 

∫ 𝑑𝑙𝐸
𝑙𝐸
𝑛

(𝑙2 + Δ)𝑎

∞

0

=
Γ(𝑎 − 𝑛/2 − 1 2⁄ ) Γ(𝑛/2 + 1 2⁄ )

2Γ(𝑎)

1

Δ𝑎−𝑛/2−1 2⁄
 

(result given without proof). The Γ function is divergent at 

negative integers; thus, we need 𝑛 2⁄ < 𝑎 − 1/2. Since we get a 

factor 𝑙𝐸
3  from the spherical integration measure, typically we are 

interested in 𝑛 ≥ 3. Thus, 𝑎, which is basically the number of 

propagators of the loop due to 12.2, must be definitely larger than 

2. If the loop contains fermion propagators, they will contribute 

additional factors of momentum to the numerator (hence, larger 

𝑛) and 𝑎 needs to be even larger. However, in NLO, the number of 

propagators 𝑎 in a loop is rather small. 

Hence, usually rather than exceptionally, the loop integrals (or 

what is left over of them after Wick rotation) are divergent. 

PRINCIPLE OF REGULARIZATION – EXAMPLE OF CUT OFF: 

There are several different concepts of how to deal with those 

divergent integrals, but they have something in common: The 

goal to absorb the infinity of the integral into a single parameter.  

The simplest concept of regularization is the cut off. Consider an 

integral 𝐼 = ∫ 𝑑𝑥 𝑥
∞

0
, that is divergent at the upper boundary. We 

can write this integral in terms of a regulator 𝐶 as 

𝐼 = ∫ 𝑑𝑥 𝑥
𝐶

0

= 𝐶2 2⁄ , 

where the limit 𝐶 → ∞ is implied. In that way, we can get rid of 

the integral and move on with our computation, while keeping 

track of the infinity hidden in the parameter 𝐶. In the end, this 

parameter 𝐶 will always drop out of results for measurable 

quantities. 

In the formula in the beginning of this section, the divergence is 

absorbed into the first Γ function, which sounds fine as well – 

after all, we got rid of the integral just as well as with a cutoff. 

However, this absorption is not very flexible, as it depends on 

integers 𝑛, 𝑎 and is even different for the different orders of the 

polynomial 𝑓.  

DIFFERENT REGULARIZATION PROCEDURES:  

There are different ways of introducing regulators into integrals 

and more intricate ways than a simple cutoff are often more 

practical. Widely used is the so-called dimensional regularization 

and we could stick to this procedure for all the calculations ahead. 

However, to get a sense of what else might be possible, we also 

will consider Pauli-Villars regularization as a second example. 

One huge advantage of dimensional regularization is that 

symmetries, such as the Ward identity, stay alive not only in the 

limit 𝐶 → ∞ of the regulator but also for finite values of 𝐶. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12.6 Dimensional Regularization 
IDEA: SWITCHING TO 𝒅-DIMENSIONS: 

The idea of dimensional regularization is to compute integrals in 

𝑑 = 4 − 𝜖 

space-time dimensions, such that 1/𝜖 corresponds to the 

regulator 𝐶 from 12.5. Note, that we need to use the general 𝑑-

dimensional Dirac algebra from 12.3, when we perform 

dimensional regularization. 

𝒅-DIMENSIONAL UNIT SPHERE: 

After Wick rotation, we want to turn to spherical coordinates.  

For that purpose, we need the volume of a unit sphere (>12.6.1): 

Ω𝑑 =
2𝜋2−𝜖 2⁄

Γ(2 − 𝜖 2⁄ )
. 

𝒅-DIMENSIONAL INTEGRALS (EXAMPLES): 

For us, the most relevant integrals can be given as (>12.6.2) 

∫
𝑑𝑑𝑙�̅�

(𝑙𝐸
2 + Δ)𝑛

=
1

(4𝜋)2−𝜖 2⁄

Γ(𝑛 − 2 + 𝜖 2⁄ )

Γ(𝑛)

1

Δ𝑛−2+𝜖 2⁄
,     

∫
𝑑𝑑𝑙�̅�  𝑙𝐸

2

(𝑙𝐸
2 + Δ)𝑛

=
𝑑

2

1

(4𝜋)2−𝜖 2⁄

Γ(𝑛 − 3 + 𝜖 2⁄ )

Γ(𝑛)

1

Δ𝑛−3+𝜖 2⁄
. 

(From now on, we only consider exponents 𝑛 ∈ ℕ ∖ 0.) 

THE LIMIT OF 𝒅 → 𝟒: 

The first integral is finite for 𝑛 > 2, the second for 𝑛 > 3; then 

we can simply set 𝜖 = 0 (in those case, regularization would not 

have been necessary). In any other case, we must take the limit 

𝜖 → 0 carefully (>12.6.3): 

𝜖 appearing simply in the exponent yields 

𝑏𝑎𝜖 = 1 + 𝑎𝜖 ln 𝑏 + 𝒪(𝜖2). 

For 𝜖 in Γ-functions, we find for 𝑚 ∈ ℤ 

Γ(𝑚 + 𝜖 2⁄ )    = Γ(𝑚),                                            for 𝑚 > 0, 

Γ(−𝑚 + 𝜖 2⁄ ) =
(−1)𝑚

𝑚!
(
2

𝜖
− 𝛾 + 𝒪(𝜖)) ,          for 𝑚 ≥ 0, 

where 𝛾 ≈ 0.58 is the Euler-Mascheroni constant. Take care, that 

the important special case 𝑚 = 0 is contained in the second 

formula.  

DIMENSION OF THE COUPLING CONSTANT: 

The mass dimension of the coupling constant in QED is (>15.1.2) 
[𝑔] = (4 − 𝑑) 2⁄ = 𝜖/2. 

Since we wish to work with a dimensionless coupling constant 

also in 𝑑 ≠ 4 dimensions, it turns out to be very fruitful to write 

𝑔 → 𝜇𝜖 2⁄ 𝑔,          �̃�2 ≔ 4𝜋𝜇2𝑒−𝛾  

in dimensional regularization calculations, such that 𝑔 remains 

dimensionless. At this point, 𝜇 is just some arbitrary mass scale 

with [𝜇] = 1, which needs to drop out of physical results. �̃�, 

containing the Euler-Mascheroni constant 𝛾 from above, will be a 

useful abbreviation. 

EXAMPLE FOR THE EXPANSION OF AN INTEGRAL IN 𝝐: 

After using the integral formulae above, we expand all 𝜖-

dependend quantities in 𝜖 and keep order lower than 𝒪(𝜖). 

For example, consider the first integral in the 𝑛 = 2 case. 𝑛 = 2 

means that there were two propagators, so in QED there also are 

two vertex factors containing a factor 𝑔 each. Taking those 

factors into account, we find (>12.6.4) 

𝑔2∫
𝑑4𝑙�̅�

(𝑙𝐸
2 + Δ)2

=
𝑔2

(4𝜋)2
(
2

𝜖
+ ln

�̃�2

Δ
+ 𝒪(𝜖)). 

 
 
 
 
 
 
 
 
 
 



12.7 Pauli-Villars Regularization 
IDEA: ADDITIONAL MASSIVE PHOTON PROPAGATOR: 

Pauli-Villars regularization takes a completely different way 

than dimensional regularization. Let’s assume that the loop we 

consider contains at least one photon propagator. In Pauli-Villars 

regularization, we artificially replace one photon propagator by 
−𝑖𝜂𝜇𝜈

𝑘 + 𝑖𝜖
   →      −𝑖𝜂𝜇𝜈 (

1

𝑘2 + 𝑖𝜖
−

1

𝑘2 − Λ2 + 𝑖𝜖
), 

where the limit Λ → ∞ is implied (then, the artificially added 

term disappears again). Λ corresponds to the regulator 𝐶 from 

12.5. 

That is, the Pauli-Villars term plays the role of a fictious heavy 

photon, whose contribution is subtracted from the ordinary 

photon. 

HOW THE LOOP INTEGRAL IS CHANGED: 

Thus, the loop integral is no more a single product of 

propagators and vertex factors, but now a sum of two such 

products, one of which equals the “usual” loop diagram and the 

second contains Λ. After introducing Feynman parameters 

(12.2), we are going to see that the same shift of the integration 

variable 𝑘𝜇 → 𝑙𝜇 +⋯ will also bring the denominator of the 

second term into the desired form, but for a different Δ, that now 

contains Λ. Let us call it ΔΛ. That is, the structure of the 

integrand will be 

(numerator) (
1

(𝑙2 − Δ + 𝑖𝜖)𝑎
−

1

(𝑙2 − ΔΛ + 𝑖𝜖)
𝑎
). 

That is, the numerator of the two terms will be equal.  

IMPORTANT INTEGRALS (EXAMPLES): 

After simplifying the numerator using the Dirac algebra (12.3, in 

four dimensions) and performing a Wick rotation (12.4), both 

terms will be of the form given in the end of 12.4. Assuming 𝑓 is 

polynomial, the following integrals will be of interest (they 

correspond precisely to the two integrals given in 12.6): 

∫𝑑4𝑙�̅� (
1

(𝑙𝐸
2 + Δ)𝑛

−
1

(𝑙𝐸
2 + ΔΛ)

𝑛
) =

Ω4
(2𝜋)4

{
 
 

 
 
𝑏𝑛
Δ𝑛−2

−
𝑏𝑛

ΔΛ
𝑛−2 , 𝑛 > 2

1

2
ln ΔΛ/Δ,      𝑛 = 2

∞,                    𝑛 < 2

 

 

∫𝑑4𝑙�̅� (
𝑙𝐸
2

(𝑙𝐸
2 + Δ)𝑛

−
𝑙𝐸
2

(𝑙𝐸
2 + ΔΛ)

𝑛
) =

Ω4
(2𝜋)4

{
 
 

 
 
𝑐𝑛
Δ𝑛−3

−
𝑐𝑛

ΔΛ
𝑛−3 , 𝑛 > 3

1

2
ln ΔΛ/Δ,      𝑛 = 3

∞,                    𝑛 < 3

 

where 

𝑏𝑛 =
1

2(𝑛 − 2)(𝑛 − 1)
,          𝑐𝑛 =

1

(𝑛 − 3)(𝑛 − 2)(𝑛 − 1)
. 

Since ΔΛ will contain Λ to a positive power, in the first cases (𝑛 >

2 and 𝑛 > 3 respectively), we can readily take the limits ΔΛ → ∞ 

(in those cases, regularization would not have been necessary).  

COMPARISION TO DIMENSIONAL REGULARIZATION: 

Since ΔΛ will contain Λ to a positive power, the divergence in the 

limit Λ → ∞ is logarithmical. This logarithmic divergence 

corresponds to the linear divergence 1 𝜖⁄ → ∞ in dimensional 

regularization. 



13 Divergences in QED 
 

13.1 Overview 
In chapter 12, we gave an overview about the technics needed 

for the computation of general loop diagrams. The particular 

difficulty in computing loop diagrams is that their momentum 

integrals are divergent. Let us now apply the technics of chapter 

12 to actually compute specific elementary contributions of 

loops.  

TYPES OF LOOPS: 

In higher orders of perturbation theory, important types of 

corrections are corrections to the QED vertex and the 

propagators. A QED vertex has two external electrons and one 

external photon, but what happens in between can be very 

complicated at higher orders of perturbation theory: 

 
Here, the grey blob stands for the sum of all possible Feynman 

diagrams without further external particles, that cannot be cut 

into two separate diagrams by removing a single line (see 

(>13.2.1) for an example). Similarly, corrections to the 

propagators are 

 
For propagators, the blob of diagrams that cannot be split into 

two by removing a single line is called “one particle irreducible” 

or “1PI”. Then, the full propagator with all possible corrections 

can have an arbitrary number of 1PIs: 

 
The higher order contributions to propagators are also called 

“self-energy”. When we want to compute the next leading order 

(NLO) in perturbation theory, we obviously need to deal with 

the diagrams 

 
This is exactly what we are going to do in 13.3, 13.4 and 13.2 

respectively.  

ULTRAVIOLETT (UV) DIVERGENCES: 

All three of those diagrams will be ultraviolet (UV) divergent, 

that is their loop momentum integrals divergence in the limit of 

large loop momenta. The UV divergences of the first diagram 

will be partly absorbed into the mass. The other part will cancel 

the UV divergence of the vertex correction completely. The UV 

divergence of the second diagram will be absorbed into the 

elementary charge. We will see how the cancellation and 

absorption works in 13.5. 

INFRARED (IR) DIVERGENCES: 

The machinery of chapter 12 is especially tailored to deal with 

UV divergences. However, the first and third of the diagrams 

above will additionally be infrared (IR) divergent, that is 

divergent in the limit where the momenta of the loop photon are 

small. 

Note, that any real particle detector, will have an energy limit 𝐿, 

that is it cannot detect particles with lower energies than 𝐿. 

Since electrons have mass and charge, which makes them easier 

to detect, this especially applies to low energy final photons (so-

called “soft photons”). If we want to measure the cross section 

for an amplitude ℳ0, the diagrams 

 

with additional final photons with 𝑘0 < 𝐿 will be experimentally 

indistuinguishable from the cross section of ℳ0 alone. We will 

compute the contributions of such soft photons in 13.6. They 

will also be IR divergent and luckily precisely cancel the IR 

divergences of the other diagrams above. We will see how this 

cancellation works in 13.8.  

HIGHER ORDERS IN PERTURBATION THEORY: 

Recall the statements of 7.6 at this point: Now, that we are 

dealing with higher orders in perturbation theory, we must 

include the self-energy factors 𝑍2,3 according to the Feynman 

rules in 8.2; we cannot longer set them to 1 as in leading order 

(LO) calculations. 

Similarly, we must in principle carefully distinguish between the 

bare mass 𝑚0 and the physical mass 𝑚. However, the relation 

𝑚0 = 𝑚 + 𝒪(𝛼) will still allow us to replace 𝛼𝑚0 by 𝛼𝑚, if we 

are only interested into order-𝛼 expressions, since the difference 

is only of order-𝛼2: 

𝛼𝑚0 = 𝛼𝑚 + 𝒪(𝛼
2). 

The same holds for the bare and physical couplings 𝑔0 and 𝑔. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13.2 The Vertex Correction 
Consider the class of diagram drawn in the 

figure, where the blob Γ𝜇  is the sum of all (amputated) 

diagrams that cannot be split into two diagrams by 

removing a single line (>13.2.1). The amplitude of the whole 

diagram is 

𝑖ℳ = 𝑍2√𝑍3  �̅�𝑝′  (𝑖𝑔0Γ
𝜇) 𝑢𝑝 𝜀𝑞𝜇. 

GENERAL STRCTURE OF THE VERTEX CORRECTION: 

By quite simple arguments, we find that the structure of Γ𝜇  has 

to be (>13.2.2) 

Γ𝜇(𝑞) = 𝛾𝜇𝐹1(𝑞
2) +

𝑖𝜎𝜇𝜈𝑞𝜈
2𝑚

𝐹2(𝑞
2). 

with the form factors 𝐹𝑖 , which are functions of 𝑞2 = (𝑝′ − 𝑝)2. 

The lowest order of perturbation theory must give us the usual 

vertex Feynman rule, that is Γ𝜇 = 𝛾𝜇 +⋯. Let us then denote the 

NLO corrections by a 𝛿: 

Γ𝜇 = 𝛾𝜇 + 𝛿Γ𝜇 +⋯                                                             

⟹     𝐹1(𝑞
2) = 1 + 𝛿𝐹1(𝑞

2) + ⋯,     𝐹2(𝑞
2) = 0 + 𝛿𝐹2(𝑞

2) + ⋯. 

COMPUTING THE NLO LOOP INTEGRAL: 

The first order correction 𝛿Γ𝜇  (that is, the NLO) is 

the diagram drawn on the right. After setting up its 

amplitude by Feynman rules, it is time for 

the machinery of chapter 12 to get to work: 

 – Write down amplitude with Feynman rules: 8.2, (>13.2.3) 

 – Introducing Feynman parameters: 12.2, (>13.2.4) 

 – Simplifying the Numerator with Dirac algebra: 12.3,  

 – (>13.2.5) 

 – Performing the Wick rotation: 12.4, (>13.2.6) 

 – Regularize with Pauli-Villars: 12.7, (>13.2.7) 

(in this case, we use Pauli-Villars, since it avoids the more 

complicated Dirac algebra of dimensional regularization). 

RESULTS WITH PAULI-VILLARS REGULARIZATION: 

In (>13.2.7), we extract the corrections to the form factors from 

the result of our computation: 

𝛿𝐹1 =
𝛼

2𝜋
∫𝐷�⃗� (ln

𝑥Λ2

Δ
+
(1 − 𝑦)(1 − 𝑧)𝑞2 + (1 − 4𝑥 + 𝑥2)𝑚2

Δ
), 

𝛿𝐹2 =
𝛼

2𝜋
∫𝐷�⃗�

2𝑚2𝑥(1 − 𝑥)

Δ
, 

where 

                      Δ = −𝑞2𝑦𝑧 + (1 − 𝑥)2𝑚2 + 𝑥𝜈2,       

                      ∫𝐷�⃗� ≔ ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿(1 − 𝑥 − 𝑦 − 𝑧)
1

0
.  

Note that 𝜈 → 0 is a small photon mass to regulate an infrared 

divergence. 

DIVERGENCES: 

𝛿𝐹1 is obviously UV divergent when Λ → ∞. We will see in 13.5, 

how this divergence is cancelled. 

𝛿𝐹1 is also IR divergent when 𝜈 → 0 (>13.2.8). We will examine 

this divergence more closely in 13.7 and see in 13.8 how this it is 

cancelled. 

𝛿𝐹2 is neither UV nor IR divergent. Still, we cannot give an 

analytical result for a general 𝑞2. However, we can give (>13.2.9) 

𝐹2(0) = 𝛿𝐹2(0) =
𝛼

2𝜋
. 

VERTEX RENORMALIZATION FACTOR:  

For proving the cancellation of divergences, it will be useful to 

define also a “vertex renormalization” factor 𝑍1 as 

𝛾𝜇 = 𝑍1 Γ
𝜇(𝑞)          in the limit          𝑞 → 0. 

By this definition, we must have (>13.2.10) 

𝑍1 = 1 + 𝛿1          ⟹           𝛿1
(2) = −𝛿𝐹1(0). 

with (>13.2.11) 

𝛿1
(2) =

−𝛼

2𝜋
∫ 𝑑𝑥 (1 − 𝑥)
1

0

(ln
𝑥Λ2

Δ0
+
(1 − 4𝑥 + 𝑥2)𝑚2

Δ0
), 

where Δ0 ≔ (1 − 𝑥)2𝑚2 + 𝑥𝜈2. 
 

13.3 The Electron Self-Energy 
ONE PARTICLE IRREDUCIBLE DIAGRAMS (1PIs): 

All the self-interactions of an electron can be grouped into one-

particle irreducible diagrams 1PI’s, that is any diagram that 

cannot be split into two by removing a single line. We now 

define −𝑖Σ(𝑝) to be the sum of all 1PI’s of an electron 

propagator: 

 
Similarly to 𝑖𝑔Γ𝜇 , −𝑖Σ is defined to be an amputated amplitude 

without propagators or spinors of its external lines. 

The total amplitude for an interacting electron propagator (in 

momentum space) equals then all combinations of 1PI’s: 

 
1PI TO LEADING ORDER: 

To first order, −𝑖Σ(2)(𝑝) is the amplitude of the diagram 

drawn on the right. Using Feynman parameters, 

Wick rotation and Pauli-Villars regularization we 

find (>13.3.1) 

Σ(2)(𝑝) = Σ(2)(𝑝) =
𝛼

2𝜋
∫ 𝑑𝑥 (2𝑚0 − 𝑥𝑝) ln

𝑥Λ2

Δ

1

0

, 

where 

Δ ≔ (1 − 𝑥)𝑚0
2 − 𝑥(1 − 𝑥)𝑝2 + 𝑥𝜈2. 

Since Σ(2) is the order-𝛼 contribution to Σ and we will find below 

that 𝑚 = 𝑚0 + 𝒪(𝛼), we can replace the bare mass 𝑚0 by the 

physical mass 𝑚 in this expression to order 𝛼. 

ADDING UP AN ARBITRARY NUMBER OF 1PI’S: 

Turning the second of the sketches above into mathematics, we 

have to evaluate an infinite sum on the right-hand side and 

finally we find (>13.3.2) 

FT⟨Ω|𝒯 𝜓(𝑥)�̅�(𝑦)|Ω⟩ =
𝑖

𝑝 − 𝑚0 − Σ(𝑝)
. 

THE PHYSICAL MASS AND THE FIELD STRENGTH RENORM.: 

From the structure of the interacting propagator that we found 

in 7.3, we can come up with the equation (>13.3.3) 
𝑖

𝑝 − 𝑚0 − Σ(𝑝)
=

𝑖𝑍2
𝑝 − 𝑚

          for          𝑝 → 𝑚. 

Thus, 𝑚 is the pole and 𝑖𝑍2 its residue of the left-hand side. We 

can deduce (>13.3.4) 

𝑚 = 𝑚0 + Σ(𝑝 = 𝑚),          𝑍2 = (1 −
𝜕Σ(𝑝)

𝜕𝑝
|
𝑝=𝑚

)

−1

. 

CORRECTIONS TO THE MASS AND FSR: 

Let us define quantities Δ𝑚 and 𝛿2 by 

𝑚 = 𝑚0 + Δ𝑚,          𝑍2 = 1 + 𝛿2. 

Then, if Δ𝑚(2), 𝛿2
(2) are the order-𝛼 contributions, we find 

Δ𝑚(2) = Σ(2)(𝑚) =
𝛼

2𝜋
∫ 𝑑𝑥 (2 − 𝑥)𝑚 ln

𝑥Λ2

Δ0

1

0

,                                     

𝛿2
(2) =

𝜕Σ(2)(𝑝)

𝜕𝑝
|
𝑚

=
𝛼

2𝜋
∫ 𝑑𝑥 (

2(2 − 𝑥)𝑥(1 − 𝑥)𝑚2

Δ0
− 𝑥 ln

𝑥Λ2

Δ0
)

1

0

, 

where Δ0 = (1 − 𝑥)2𝑚2 + 𝑥𝜈2. 

DIVERGENCES: 

All the quantities, Σ(2), Δ𝑚(2) and 𝛿2
(2) are UV and IR divergent. 

Since 𝑚 is the measurable finite particle mass, 𝑚0 must be 

infinite to cancel the divergence of Δ𝑚.  

 
 
 
 
 
 
 
 



13.4 The Photon Self-Energy (Vacuum Polarization) 
ONE PARTICLE IRREDUCIBLE DIAGRAMS (1PIs): 

The photon’s pendant of the electron’s 1PI −𝑖Σ(𝑝) will be 

 
Here, 𝑖Π𝜇𝜈  is only supposed to denote the 1PI, not the adjacent 

photon propagators. The total amplitude is then given by 

 
GENERAL FORM OF THE 1PI: 

By simple arguments (especially the Ward identity) we can 

deduce that the 1PI must have the structure (>13.4.1) 

Π𝜇𝜈(𝑞) = (𝑞2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈)Π(𝑞2), 

where Π(𝑞2) is regular at 𝑞2 = 0. 

1PI TO LEADING ORDER: 

Let 𝑖Π(2)
𝜇𝜈 (𝑞) be the amplitude of the first-order 

diagram drawn on the right. We, again, compute it with our 

machinery from chapter 12: 

 – Write down amplitude with Feynman rules: 8.2, (>13.4.2) 

 – Introducing Feynman parameters and shifting the  

 – integration variables: 12.2, (>13.4.3) 

 – Simplifying the Numerator with Dirac algebra: 12.3,  

 – (>13.4.4) 

 – Performing the Wick rotation: 12.4, (>13.4.5) 

 – Evaluate the integrals with dimensional regularization:  

 –12.6, (>13.4.6) 

Finally, we get the prophesied structure of Π𝜇𝜈  given above with 

Π(2)(𝑞2) = −
2𝛼

𝜋
∫ 𝑑𝑥 𝑥(1 − 𝑥) (

2

𝜖
+ ln

�̃�2

Δ
)

1

0

, 

where  

Δ = −𝑥(1 − 𝑥)𝑞2 +𝑚2, 

�̃�2 = 4𝜋𝜇2𝑒−𝛾.                   

ADDING UP AN ARBITRARY NUMBER OF 1PI’S: 

Turning the second of the sketches above into mathematics, we 

have to evaluate an infinite sum on the right-hand side and 

finally we find (>13.4.7) 

FT⟨Ω|𝒯 𝐴𝜇(𝑥)𝐴𝜈(𝑦)|Ω⟩ =
−𝑖𝜂𝜇𝜈

𝑞2
1

1 − Π(𝑞2)
. 

Since Π(𝑞2) is regular at 𝑞2 = 0, the exact propagator always has 

a pole at 𝑞2 = 0 and the photon will remain massless to all 

orders of perturbation theory. 

THE FIELD STRENGTH RENORM.: 

As in 13.3 (or (>13.3.3)), we can set up the equation 
−𝑖𝜂𝜇𝜈

𝑞2
⋅ 𝑍3 =

−𝑖𝜂𝜇𝜈

𝑞2
1

1 − Π(𝑞2)
          for          𝑞2 → 𝑚2 = 0. 

In contrast to the electron case, it is very easy to read off 

𝑍3 =
1

1 − Π(0)
. 

CORRECTIONS TO THE FIELD STRENGTH RENORM.: 

Let us define 𝛿3 by 

𝑍3 = 1 + 𝛿3. 

Then, if 𝛿3
(2) is the order-𝛼 contribution to 𝛿3, we find as 

𝛿3
(2) = Π(2)(0) = −

2𝛼

𝜋
∫ 𝑑𝑥 𝑥(1 − 𝑥)
1

0⏟          
=1/6

(
2

𝜖
+ ln

�̃�2

𝑚2
). 

(note that 𝑍3 = 1 + Π(0) + 𝒪(𝛼
2)).  

DIVERGENCES: 

Π(2) as well as 𝛿3
(2) are UV, but not IR divergent.  

 
 
 
 
 

13.5 Cancellation/Renormalization of UV Divergences 
FERMION PROPAGATOR WITH RENORMALIZED SIGMA: 

We find that we can write the full interacting electron 

propagator as (>13.5.1) 
𝑖

𝑝 − 𝑚0 − Σ(𝑝)
=

𝑖𝑍2
𝑝 −𝑚 − Σ𝑅(𝑝)

, 

where 

Σ𝑅(𝑝) = Σ
(2)(𝑝) − Δ𝑚(2) − 𝛿2

(2)(𝑝 − 𝑚) + 𝒪(𝛼2). 

In this 𝛼-order expression for Σ𝑅(𝑝), the Pauli-Villars regulator Λ 

precisely cancels, such that Σ𝑅(𝑝) contains no UV divergence 

(>13.5.2): 

Σ𝑅
(2)(𝑝) =

𝛼

2𝜋
∫ 𝑑𝑥 ((2𝑚 − 𝑥𝑝) ln

Δ0

Δ
− (𝑝 − 𝑚)

Δ̃

Δ0
)

1

0

, 

where Δ, Δ0 are as in 13.3 and Δ̃ = 2(2 − 𝑥)𝑥(1 − 𝑥)𝑚2. Note 

that Σ𝑅(𝑝 = 𝑚) = 0, such that 𝑝 = 𝑚 is the pole of the 

propagator. 

PHOTON PROPAGATOR WITH RENORMALIZED PI: 

We find that we can write the full interacting photon propagator 

as (>13.5.3) 
−𝑖𝜂𝜇𝜈

𝑞2
1

1 − Π(𝑞2)
=
−𝑖𝜂𝜇𝜈

𝑞2
𝑍3

1 − Π𝑅(𝑞
2)
, 

where 

Π𝑅
(2)(𝑞2) = Π(2)(𝑞2) − 𝛿3

(2). 

In this 𝛼-order expression for Π𝑅(𝑝), the regulator 1/𝜖 from 

dimensional regularization precisely cancels, such that Π𝑅(𝑝) 

contains no UV divergence (and it never contained IR 

divergences, >13.5.4): 

Π𝑅
(2)(𝑞2) = −

2𝛼

𝜋
∫ 𝑑𝑥 𝑥(1 − 𝑥) ln

𝑚2

Δ

1

0

, 

where Δ = −𝑥(1 − 𝑥)𝑞2 +𝑚2 as in 13.4. We find Π𝑅
(2)(0) = 0. 

Some properties of Π𝑅  will be investigated in 14.2. 

VERTEX FACTOR WITH RENORMALIZED F1: 

The full vertex factor can be given as (>13.5.5) 

𝑖𝑔0Γ
𝜇(𝑞) =

𝑖𝑔

𝑍1√𝑍3
Γ𝑅
𝜇(𝑞), 

where 𝑔 ≔ √𝑍3𝑔0 and 

Γ𝑅
(2)𝜇(𝑞) = 𝛾𝜇 (1 + 𝛿𝐹1(𝑞

2) + 𝛿1
(2))⏟              

=𝐹1𝑅
(2)(𝑞2)

+
𝑖𝜎𝜇𝜈𝑞𝜈
2𝑚

𝐹2(𝑞
2). 

Due to cancellation, 𝐹1𝑅 does not contain a Pauli-Villars 

regulator and hence no UV divergence (>13.5.6): 

𝐹1𝑅
(2)(𝑞2) =

𝛼

2𝜋
∫𝐷�⃗� (ln

Δ0

Δ
+
(1 − 𝑦)(1 − 𝑧)𝑞2 + Δ̂

Δ
−
Δ̂

Δ0
), 

where Δ, Δ0 as in 13.2 and Δ̂ = (1 − 4𝑥 + 𝑥2)𝑚2. 

ABSORBING 𝒁𝟐, 𝒁𝟑 INTO THE VERTEICES: 

Above we saw, that we can turn the bare propagators and the 

bare vertex factor (that contained infinite quantities 

𝑚0, 𝑔0, Σ, Π, Γ
𝜇) into UV finite “renormalized” propagators and 

vertex factors (that contain finite quantities 𝑚,𝑔, Σ𝑅 , Π𝑅 , Γ𝑅
𝜇

) – 

well almost finite, since the infinite factors 𝑍1, 𝑍2, 𝑍3 are still 

there. They appear in the denominator of the vertex factor and 

in the numerator of the propagators (and as prefactors of 

external particles, see 8.2) and therefore cancel (>13.5.7), if 

𝑍1 = 𝑍2. 

We can show this relation explicitly to order-𝛼 (>13.5.8) and 

even proof it to all order of perturbation theory (>13.5.9). 

RENORMALIZATION OF THE CHARGE: 

𝑔0 is the bare coupling (in QED: 𝑔0 = 𝑒0) parameter in the 

Lagrangian. However, the physical charge that appears in the 

vertex can be given as 

𝑔 ≔ 𝑍2√𝑍3 𝑍1⁄ 𝑔0 = √𝑍3𝑔0. 

The physical charge 𝑔 = 𝑒 is measurable and finite.  
 



13.6 Soft Bremsstrahlung 
THE NEED FOR CONSIDERING SOFT BREMSSTRAHLUNG: 

Assume we are interested in measuring the cross section for a 

process with amplitude ℳ. Then, consider the diagrams 

 
where ℳ0 ≡ℳ0(𝑝

′, 𝑝 − 𝑘) and ℳ0
′ ≡ ℳ0(𝑝

′ + 𝑘, 𝑝) are 

functions of their external momenta (thir blobs may also contain 

other external particles). Realistic particle detectors always have 

an energy boundary 𝐿, below which they cannot detect particles 

anymore. That is, if 𝑘 is small enough (“the photon is soft”) such 

that 𝜔𝑘 < 𝐿, the processes above will be experimentally 

indistinguishable from the process ℳ0 that we are a looking for. 

Therefore, we must include the possibility of the emission of 

arbitrary soft photons up to the momentum 𝜔𝑘 < 𝐿. 

Note that in the limit of small 𝑘 we obviously have ℳ0 ≈ ℳ0
′. 

AMPLITUDE: 

Since there is no loop in this diagram, the computation of the 

amplitude (in terms of ℳ0,ℳ0
′) is a lot easier than in 13.2, 13.3 

and 13.4 and does not require the machinery from chapter 12. In 

the limit of small 𝑘, we find (>13.5.1) 

𝑖ℳ ≈ −𝑔(
𝑝′ ⋅ 𝜀𝑘
𝑝′ ⋅ 𝑘

−
𝑝 ⋅ 𝜀𝑘
𝑝 ⋅ 𝑘

) ⋅ �̅�𝑝′ℳ0𝑢𝑝. 

This amplitude is IR divergent (that is, for 𝑘 → 0).  

CROSS SECTION: 

In contrast to UV divergences, IR divergences do not cancel on 

the level of amplitudes, but only of cross sections. The cross 

section for the process above can also be divided into the “old” 

cross section 𝑑𝜎0 and a factor accounting for the emitted 

photons. To account for all possible soft photon momenta and 

polarizations, we need to integrate over 𝑘 (up to 𝐿) and sum 

over 𝜆 (which the polarization vectors implicitly depend on): 

𝑑𝜎B = 𝑔
2∫ 𝑑�̃� ∑ |

𝑝′ ⋅ 𝜀𝑘
𝑝′ ⋅ 𝑘

−
𝑝 ⋅ 𝜀𝑘
𝑝 ⋅ 𝑘

|

2

𝜆=1,2

𝐿

𝜈⏟                  
=∶ℐ

⋅ 𝑑𝜎0. 

ℐ will be IR divergent; to regulate this divergence, we include a 

small photon mass 𝜈 into the lower boundary, whose physical 

limit is 𝜈 → 0.  

COMPUTATION OF THE INTEGRAL 𝓘: 

After a lengthy computation, we find (>13.6.2) 

𝑔2ℐ =
𝑔2

(2𝜋)2
𝑓IR(𝑞

2) ln
𝐿2

𝜈2
, 

where 𝑞 ≔ 𝑝 − 𝑝′ and 

𝑓IR(𝑞
2) ≔

1

2
∫ 𝑑𝑥

2𝑚2 − 𝑞2

𝑚2 − 𝑞2𝑥(1 − 𝑥)

1

0

− 1 ≈ ln
−𝑞2

𝑚2
, 

where the last approximation holds in the limit −𝑞2 ≫ 𝑚2 

(>13.6.3). 

FINAL RESULT FOR THE CROSS SECTION: 

Hence, we find, using 𝑔2 = 4𝜋𝛼, 

𝑑𝜎B    =    𝑑𝜎0 ⋅ 𝑔
2ℐ   =    𝑑𝜎0 ⋅

𝛼

𝜋
𝑓IR(𝑞

2) ln
𝐿2

𝜈2
. 

In the limit −𝑞2 ≫ 𝑚2, 𝑓IR turns into a logarithm, leaving us with 

the Sudakov double logarithm on the right-hand side. 
 

13.7 The Infrared Divergence of the Vertex Factor  
We have seen in 13.5 that the renormalized form factor 𝐹1𝑅(𝑞

2) 

is UV finite. However, it is still IR divergent. When we focus on 

the IR divergent part of its order 𝛼, we find (>13.7.1)  

𝐹1𝑅(𝑞
2) = 1 + 𝛿𝐹1𝑅(𝑞

2) + 𝒪(𝛼2), 

where 

𝛿𝐹1𝑅(𝑞
2) ≈ −

𝛼

2𝜋
𝑓IR(𝑞

2) ln
−𝑞2 or 𝑚2

𝜈2
+ IR finite. 

 

13.8 Cancellation of Infrared Divergences 
GENERAL STATEMENTS ON INFRARED DIVERGENCIES: 

Infrared Divergencies arise from soft photons: Real photons 

with small momenta (soft bremsstrahlung, 13.6) and virtual 

photons (vertex correction, 13.7). However, the real reason for 

the divergence is the singular denominator of an electron 

propagator. Consider the diagram 

 
where 𝑞 is in any case a “hard” photon. If now 𝑘2 is a soft photon, 

the electron propagator with momentum 𝑝′ − 𝑘2 will diverge for 

𝑘2 → 0. If 𝑘2 is a hard photon, this electron propagator will not 

diverge, even if 𝑘1 is a soft photon. Thus, a hard, non-diverging 

process can contain real soft photons “in the middle”. We only 

get divergencies from soft photons attached to the outer 

electron legs. 

CANCELLATION AT NLO: 

Consider a tree level diagram ℳ0, where two external electron 

lines meet at a common vertex. Let the corresponding cross 

section of this tree level process be 𝑑𝜎0. If we add the NLO 

contribution of the vertex correction, the amplitude reads 

ℳ0(1 + 𝛿𝐹1𝑅) 

and the cross section (>13.8.1) 

𝑑𝜎V = 𝑑𝜎0 ⋅ (1 + 2𝛿𝐹1𝑅). 

This is still IR divergent, however, we cannot measure this cross 

section without including the bremsstrahlung processes. Since 

they truly correspond to different final states, we simply add the 

cross sections (rather than the amplitudes) and we find 

𝑑𝜎 = 𝑑𝜎V + 𝑑𝜎B = 𝑑𝜎0 ⋅ (1 −
𝛼

𝜋
𝑓IR(𝑞

2) ln
−𝑞2 or 𝑚2

𝐿2
+ IR finite), 

where the IR regulator 𝜈 drops out. 𝑑𝜎 is therefore completely 

finite.  

CANCELLATION TO ALL ORDERS: 

It can be shown, that 𝑛 virtual photons between external 

electron lines add 𝑛 factors of 𝛿𝐹1𝑅 to the amplitude; however, 

we must divide by 𝑛!, since interchanging the virtual photons 

does not change the diagram. Thus, for an arbitrary number of 

virtual photons, the total amplitude is 

ℳ0∑
𝛿𝐹1𝑅

𝑛

𝑛!

∞

𝑛=0

=ℳ0 exp 𝛿𝐹1𝑅     →      𝑑𝜎0 exp 2𝛿𝐹1𝑅, 

where each term of the sum gives the amplitude for exactly 𝑛 

virtual photons. Similarly one can show, that 𝑚 soft 

bremsstrahlung photons yield 𝑚 factors of 𝑔2ℐ to the cross 

section, which can also be interchanged and therefore receive a 

factor 1/𝑚!: 

𝑑𝜎0 ⋅ ∑
(𝑔2ℐ)2

𝑚!

∞

𝑚=0

= 𝑑𝜎0 exp 𝑔
2ℐ. 

Since we are now considering arbitrary orders of perturbation 

theory, there are also diagram that include virtual and 

bremsstrahlung soft photons. Thus, we cannot divide the total 

cross section as above into a sum of 𝑑𝜎V and 𝑑𝜎B. Rather, the 

total cross section is 

𝑑𝜎 = 𝑑𝜎0 exp 2𝛿𝐹1𝑅 exp 𝑔
2𝐽

= 𝑑𝜎0 exp (−
𝛼

𝜋
𝑓IR(𝑞

2) ln
−𝑞2 or 𝑚2

𝐿2
+ IR finite). 

Expanding the exponent, we get back our NLO result from above. 

 
 
 
 
 



14 Measurable Corrections 
 

14.1 The Anomalous Magnetic Moment 
One can show that the Landé factor 𝑔𝑠 that appears in the 

connection between magnetic moment and spin, 

𝜇 = 𝑔𝑠 𝑞 2𝑚⁄ ⋅ 𝑠, 

and which is 𝑔𝑠 = 2 according to the Dirac equation, can in 

general be given as 

𝑔𝑠 = 2(𝐹1𝑅(0) + 𝐹2(0)). 

By definition, we have 𝐹1𝑅(0) = 1 (see 13.5) and we have 

computed 𝐹2(0) = 𝛼/2𝜋 in 13.2. Thereby, we find 

𝑔𝑠 = 2(1 + 𝛼 2𝜋⁄ ) ≈ 2,0023. 
 

14.2 Imaginary Part of the Photon Self-Energy 
WHEN IS 𝚷𝑹(𝒒

𝟐) REAL?: 

Recall from 13.5 the order-𝛼 contribution of Π𝑅 , 

Π𝑅
(2)(𝑞2) = −

2𝛼

𝜋
∫ 𝑑𝑥 𝑥(1 − 𝑥) ln

𝑚2

−𝑥(1 − 𝑥)𝑞2 +𝑚2

1

0

. 

For 2 → 2 fermion scattering, the 𝑞2 of the photon propagator is 

just the Mandelstam variable 𝑠, 𝑡 or 𝑢 (depending on the 

channel). In the 𝑡 and 𝑢 channel, we have 𝑞2 < 0 (>14.2.1); since 

𝑥(1 − 𝑥) > 0, the argument of the logarithm is positive in those 

cases and therefore Π𝑅
(2)(𝑞2) is manifestly real and analytic. 

In the 𝑠 channel however, 𝑞2 > 0 and the argument of the 

logarithm becomes negative if (>14.2.2) 

𝑚2 − 𝑥(1 − 𝑥)𝑞2 < 0         ⟺           𝑞2 > 4𝑚2. 

That’s the threshold for creation of a real electron-positron pair.  

THE IMAGINARY PART OF 𝚷𝑹(𝒒
𝟐): 

As discussed above, Π𝑅
(2)(𝑞2) has a non-zero imaginary part for 

𝑞2 > 0. To evaluate this, we need the formula (>14.2.3) 

ln(−�̃� ± 𝑖𝜖) = ln �̃� ± 𝑖𝜋         ⟹         Im ln(−�̃� ± 𝑖𝜖) = ±𝜋, 

where �̃� is real and positive. We then can easily evaluate the 

imaginary part of Π𝑅
(2)(𝑞2 ± 𝑖𝜖) and use the Cutkosky rules to cut 

through the loop and find the total cross section of electron 

muon scattering (>14.2.4) 

𝜎tot(𝑒
± → 𝜇±) ∼

Im Π̂2
|𝑝|𝐸cm

∼
1

𝐸cm
2
√1 −

4𝑚𝜇
2

𝐸cm
2
(1 +

2𝑚𝜇
2

𝐸cm
2
) =∶

3 ℐ(𝐸cm
2 )

𝛼0𝐸cm
2
. 

 

14.3 Momentum-Dependent Effective Charge 
THE EFFECTIVE CHARGE: 

We know from 13.5 that the total photon propagator including 

self-interactions sandwiched between to vertex factors reads 

𝑖𝑔0Γ
𝜇    
−𝑖𝜂𝜇𝜈

𝑞2
𝑍3

1 − Π𝑅(𝑞
2)
     𝑖𝑔0Γ

𝜇  

where the 𝑍3 can be absorbed into the coupling of the adjacent 

vertices, where they turn 𝑔0 into 𝑔 = √𝑍3𝑔0.  

Consider scattering of electrons, that is transmitted by the 

exchange of virtual photons. That is, each photon propagator has 

two adjacent vertices. Let us now not only absorb 𝑍3 into the 

vertices, but also the factor (1 − Π𝑅)
−1. Then we can combine 

this factor with 𝑔 to form an “effective” coupling �̅� as 

�̅�(𝑞2) =
𝑔

√1 − Π𝑅(𝑞
2)
         ⟺           �̅�(𝑞2) =

𝛼

1 − Π𝑅(𝑞
2)
: 

This effective charge is a measurable quantity. Since Π𝑅(0) = 0, 

we have �̅�(0) = 𝛼. 

RELATIVISTIC LIMIT: 

In the relativistic limit −𝑞2 ≫ 𝑚2 (which corresponds to small 

distances), we find (>14.3.1) 

Π𝑅
(2)(𝑞2) ≈

𝛼

3𝜋
ln

−𝑞2

𝑚2𝑒5 3⁄
    ⟹      �̅�(𝑞2) ≈

𝛼

1 −
𝛼
3𝜋
ln

−𝑞2

𝑚2𝑒5 3⁄

 

This yields a larger charge/coupling constant at small distances. 
 

14.4 Corrections to the Coulomb Potential 
NON-RELATIVISTIC LIMIT YIELDS COULOMB POTENTIAL: 

Consider electron-positron scattering. In the non- 

relativistic limit, we have 𝑞2 ≈ −|�⃗�|2 (>14.4.1); then, 

the photon propagator ∼ 1 (−|�⃗�|2)⁄  together with the two 

charges 𝑔2 = 𝑒2 of the adjacent vertices combine to (>14.4.1) 

𝑉0(�⃗�) ≔
𝑒2

−|�⃗�|2
         ⟺           𝑉0(𝑟) = ∫𝑑

3�̅�
𝑒2

−|�⃗�|2
𝑒𝑖�⃗⃗�⋅𝑟 = −

𝛼

𝑟
, 

which is the Fourier transformation of the Coulomb potential. 

The NLO corrections can now be added into the Coulomb 

potential by using 𝑒eff(𝑞
2) instead of 𝑒2 (see 14.3). 

CONTRIBUTION TO THE LAMB SHIFT: 

In the limit |�⃗�| ≪ 𝑚, this expression can easily be simplified and 

a correction term to the Coulomb potential emerges (>14.4.2) 

𝑉(𝑟) ≈ 𝑉0(𝑟) −
4𝛼2

15𝑚2
𝛿(𝑟). 

The correction term makes the electromagnetic force much 

stronger at small distances. This effect contributes to the lamb 

shift, for example for the hydrogen atom: 

Δ𝐸 = ⟨𝜓|𝛿𝑉|𝜓⟩ = −
4𝛼2

15𝑚2
|𝜓(0)|2. 

Since, to leading order, 𝜓 ∼ 𝑒3 ∼ 𝛼3 2⁄ , the order of this 

correction is Δ𝐸 ∼ 𝛼2𝜓2 ∼ 𝛼5. 

GENERAL CORRECTION TO THE COULOMB POTENTIAL: 

Without imposing |�⃗�| ≪ 𝑚 as above, we can write (>13.5.3) 

         𝑉(𝑟) =
𝑖𝛼

𝜋𝑟
∫ 𝑑𝑞

𝑞 𝑒𝑖𝑞𝑟

𝑞2 + 𝜈2
1

1 − Π𝑅(−𝑞
2)

∞

−∞

, 

where in this case 𝑞 ≔ |�⃗�|. A photon mass 𝜈 is needed  

for regularization. This integral has poles at 

𝑞 = ±𝑖𝜈 and a branch cut at 𝑞 = 𝑖�̃� for �̃� > 2𝑚, where 

the argument of the logarithm in Π𝑅  is negative. Assuming that 

the large quarter circles vanish, we find (>14.4.4) 

∫ +
𝛾1

∫ = 2𝜋𝑖 res 𝑖𝜈
𝛾2

. 

𝑉 is the integral along 𝛾1, 𝑉(𝑟) = ∫ .
𝛾1

 Thus (>14.4.5, >14.4.6) 

𝑉(𝑟) = 𝑉0(𝑟) −
2𝛼

𝜋𝑟
∫ 𝑑�̃�

𝑒−�̃�𝑟

�̃�
ℐ(�̃�2)

∞

2𝑚

+ 𝒪(𝛼3), 

where 

ℐ(𝑞2) ≔
𝛼

3
√1 − 4𝑚2 𝑞2⁄ (1 − 2𝑚2 𝑞2⁄ ). 

LARGE DISTANCES CORRECTION – UEHLING POTENTIAL: 

For 𝑟 ≫ 1/𝑚, the exponential 𝑒−𝑞𝑟  is almost zero except for very 

small 𝑞; thus, the integral is dominated by the region 𝑞 ≈ 2𝑚. In 

this region, we can approximate the integral and find (>14.4.7) 

𝑉(𝑟) = −
𝛼

𝑟
(1 +

𝛼

4√𝜋

𝑒−2𝑚𝑟

(𝑚𝑟)3 2⁄
+ 𝒪(𝛼2)). 

For 𝑟 = 1/𝑚, the correction term in the brackets is 10−4 ≪ 1; 

thus, 1/𝑚 is a good measure for the range of the correction. On 

this scale, the wave function of the hydrogen atom from above is 

nearly constant, which makes the 𝛿-function a good 

approximation. A possible interpretation is, that virtual electron-

positron pairs are effective dipols, which shield the bare charge 

𝑒0. At smaller distances, we penetrate the polarization cloud and 

begin to see the larger bare charge. 

The opposite limit – small distances – corresponds to the 

relativistic limit examined in 14.3. 



15 Functional Integrals 
 

15.1 Functional Integrals in Quantum Mechanics 
NON-RELATIVISTIC LIMIT: 

Consider a non-relativistic particle in one dimension with the 

Hamiltonian 𝐻 = 𝑝2 2𝑚⁄ + 𝑉(𝑥). If the particle starts at point 𝑥𝑎 , 

it will reach 𝑥𝑇 after a time 𝑇, where |𝑥𝑇⟩ = 𝑒
−𝑖𝐻𝑇|𝑥𝑎⟩. Thus, the 

amplitude for travelling from 𝑥𝑎  to 𝑥𝑏 during 𝑇 is given by 

⟨𝑥𝑏|𝑒
−𝑖𝐻𝑇|𝑥𝑎⟩ = ∫𝒟𝑥(𝑡) 𝑒

𝑖𝑆[𝑥(𝑡)], 

where 𝑥(𝑡) is a path from 𝑥𝑎  to 𝑥𝑏 and 𝑆[𝑥(𝑡)] is its action. The 

right-hand side can be motivated (>15.1.1), verified for the 

double-slit experiment (>15.1.2) and properly derived (>15.1.3). 

GENERAL CASE: 

For some general Hamilton-Operator of the form 𝐻(�⃗�, 𝑝) =

𝑓(�⃗�) + 𝑓(𝑝) (that is without terms ∼ �⃗�𝑝), where �⃗� is some set of 

coordinates and 𝑝 the conjugate momenta, we find that (>15.1.4) 

⟨�⃗�𝑏|𝑒
−𝑖𝐻𝑇|�⃗�𝑎⟩ = ∫𝒟�⃗� 𝒟𝑝 exp (𝑖 ∫ 𝑑𝑡 (𝑝�̇⃗� − 𝐻(�⃗�, 𝑝))

𝑇

0

). 

This can easily be reduced to the non-relativistic limit (>15.1.5).  
 

15.2 Quantization of Scalar Fields 
FUNCTIONAL INTEGRAL WITH THE LAGRANGIAN DENSITY: 

Turning coordinates into fields 𝜙 and using the conjugate 

momentum Π, we find (>15.2.1) 

⟨𝜙𝑏(�⃗�)|𝑒
−𝑖𝐻𝑇|𝜙𝑎(�⃗�)⟩ = ∫𝒟𝜙 exp (𝑖 ∫ 𝑑4𝑥 ℒ

𝑇

0

), 

where ℒ = (𝜕𝜇𝜙)2/2 − 𝑉(𝜙). The integration 𝒟𝜙 covers all 

possible fields 𝜙(𝑥), which obey 𝜙(�⃗�, 0) = 𝜙𝑎(�⃗�) and 𝜙(𝑥, 𝑇) =

𝜙𝑏(�⃗�). 

N-POINT FUNCTIONS WITH FUNCTIONAL INTEGRALS: 

In section 7.9 we derived an important formula for 𝑛-point 

functions. This formula can also be given in the following way: 

⟨Ω|𝒯𝜙(𝑥1)⋯𝜙(𝑥𝑛)|Ω⟩ =
∫𝒟𝜙 𝜙(𝑥1)⋯𝜙(𝑥𝑛) exp(𝑖 ∫ 𝑑

4𝑥 ℒ)

∫𝒟𝜙 exp(𝑖 ∫ 𝑑4𝑥 ℒ)
. 

The 𝜙’s on the left-hand side are Heisenberg fields (>15.2.2). 

FUNCTINAL DERIVATIVE AND GENERATING FUNCTIONAL: 

We define the functional derivative 𝛿/𝛿𝐽(𝑥) as 
𝛿𝐽(𝑦)

𝛿𝐽(𝑥)
= 𝛿(𝑥 − 𝑦)          ⟹          

𝛿

𝛿𝐽(𝑥)
∫𝑑𝑧 𝐽(𝑧)𝜙(𝑧) = 𝜙(𝑥). 

Also, for the functional derivative, we will use chain and product 

rules. Next, we define the generating functional for a scalar field 

theory as follows: 

𝑍[𝐽] ≔ ∫𝒟𝜙 exp (𝑖 ∫𝑑4𝑥 (ℒ + 𝐽(𝑥)𝜙(𝑥))). 

Now, we can write e. g. the 2-point function as (>15.2.3) 

⟨Ω|𝒯𝜙(𝑥1)𝜙(𝑥2)|Ω⟩ =
1

𝑍[0]
(−𝑖

𝛿

𝛿𝐽(𝑥1)
) (−𝑖

𝛿

𝛿𝐽(𝑥2)
) 𝑍[𝐽]|

𝐽=0

. 

GENERATING FUNCTIONAL OF FREE KLEIN-GORDON FIELD: 

For the free Klein-Gordon field ℒ = ℒ0 = (𝜕
𝜇𝜙)2/2 −𝑚2𝜙2/2, 

the generating functional takes the following form (>15.2.4): 

𝑍[𝐽] = 𝑍[0] exp (
𝑖

2
∫𝑑4𝑥 𝑑4𝑦 𝐽(𝑥) 𝑖𝐷𝐹(𝑥 − 𝑦) 𝐽(𝑦)). 

To find this form for 𝑍[𝐽], we needed the fact that 𝐷𝐹  is a Greens 

function of the Klein-Gordon operator. 

EVALUATE N-POINT WITH FUNCTIONAL INTEGRALS: 

Using the formulas with the generating function above, we 

relatively easy can show that (>15.2.5, >15.2.6) 
⟨0|𝒯𝜙(𝑥1)𝜙(𝑥2)|0⟩ = 𝐷𝐹(𝑥1 − 𝑥2) =∶ 𝐷12,                                     
⟨0|𝒯𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)|0⟩ = 𝐷34𝐷12 + 𝐷24𝐷13 + 𝐷14𝐷23. 

(We replaced |Ω⟩ by |0⟩, since we considered free theories here.) 

 
 
 

15.3 Quantization of the Electromagnetic Field 
THE PROBLEM OF GAUGE INVARIANCE: 

Due to gauge invariance, the functional integral 𝒟𝐴 includes 

infinitely many redundant physically equivalent field 

configurations. Also, without tackle the issue of gauge 

invariance, we cannot find the Feynman propagator as a Greens 

function of the equation of motion operator (>15.3.1). 

FADDEEV-POPOV PROCEDURE: 

Restricting the functional integral such that each physical 

configuration only counts once yields after some calculation an 

additional term to the Lagrangian (>15.3.2): 

⟨Ω|𝒯 𝑂(𝐴)|Ω⟩ =
∫𝒟𝐴 𝑂(𝐴) exp (𝑖 ∫ 𝑑4𝑥 (ℒ −

1
2𝜉
(𝜕𝜇𝐴𝜇)

2
))

∫𝒟𝐴 exp (𝑖 ∫𝑑4𝑥 (ℒ −
1
2𝜉
(𝜕𝜇𝐴𝜇)

2
))

. 

Here, 𝑂(𝐴) is some gauge invariant combination of 𝐴-fields. 

With this extra term, we can find a Greens function of the 

equation of motion operator, namely (in Fourier space) 

�̂�𝐹
𝜇𝜈(𝑘) =

−𝑖

𝑘2 + 𝑖𝜖
(𝜂𝜇𝜈 − (1 − 𝜉)

𝑘𝜇𝑘𝜈

𝑘2
). 

 

15.4 Graßmann Numbers 
ANTICOMMUTATION AND TAYLOR EXPANSION: 

Graßmann numbers are numbers that anticommute, that is for 

two Graßmann numbers 𝜃, 𝜂 it holds 

𝜃𝜂 = −𝜂𝜃. 

Thus, the square of any Graßmann number vanishes, which 

makes any function 𝑓 of a Graßmann number linear by Taylor 

expansion, 

𝜃2 = 0,          𝑓(𝜃) = 𝐴 + 𝐵𝜃, 

for example 𝑒𝜃 = 1 + 𝜃. 

INTEGRATION: 

Demanding basic properties like the shifting of an integration 

variable, we find (>15.4.1) 

∫𝑑𝜃 = 0,          ∫ 𝑑𝜃 𝜃 = 1         ⟹           ∫ 𝑑𝜃 𝑓(𝜃) = 𝐵. 

For derivatives and integrals with more than one Graßmann 

number we adopt the following sign convention: 
𝑑

𝑑𝜂

𝑑

𝑑𝜃
𝜂𝜃 = −

𝑑

𝑑𝜂
(
𝑑

𝑑𝜃
𝜃) 𝜂 = −

𝑑

𝑑𝜂
𝜂 = −1,                        

∫𝑑𝜂∫𝑑𝜃 𝜂𝜃 = −∫𝑑𝜂 (∫𝑑𝜃 𝜃) 𝜂 = −∫𝑑𝜂 𝜂 = −1. 

COMPLEX GRASSMANN NUMBERS: 

Complex Graßmann numbers can be built out of real and 

imaginary parts of “real” Graßmann numbers as usual. It is 

convenient, however, to define complex conjugation to reverse 

the order of products: 
(𝜃𝜂)∗ = 𝜂∗𝜃∗ = −𝜃∗𝜂∗. 

Treating 𝜃, 𝜃∗ as independent integration variables, we have 

obviously ∫𝑑𝜃∗ 𝑑𝜃 𝜃𝜃∗ = 1.  

GAUSSIAN INTEGRALS: 

The usual Gaussian integrals read (>15.4.2) 

∫𝑑𝜃∗𝑑𝜃 𝑒−𝜃
∗𝑎𝜃 = 𝑎,          ∫ 𝑑𝜃∗𝑑𝜃 𝜃𝜃∗ 𝑒−𝜃

∗𝑎𝜃 = 1. 

Note, that if 𝜃, 𝜃∗ where ordinary complex numbers, the result of 

the first integral would be 𝜋/𝑎; for Graßmann numbers, 

however, the 𝑎 appears in the numerator.  

As general Gaussian integral in multidimensional Graßmann 

number space with a complex matrix 𝐴 yields (>15.4.3) 

∫(Π𝑖𝑑𝜃𝑖
∗𝑑𝜃𝑖)𝑒

−𝜃𝑖
∗𝐴𝑖𝑗𝜃𝑗 = det 𝐴,                     

∫(Π𝑖𝑑𝜃𝑖
∗𝑑𝜃𝑖) 𝜃𝑛𝜃𝑚

∗  𝑒−𝜃𝑖
∗𝐴𝑖𝑗𝜃𝑗 = 𝐴𝑛𝑚

−1 det 𝐴. 

Again, the det 𝐴 would appear in the denominator for ordinary 

complex numbers (see footnote in section (>15.2.4)). 
 



15.5 Quantization of Spinor Fields 
GRASSMANN FIELDS: 

To describe the anticommuting nature of the Dirac field, it 

should be a Graßmann field 𝜓(𝑥), which can be defined as 

𝜓(𝑥) =∑𝜓𝑖𝜙𝑖(𝑥)

𝑖

, 

where 𝜓𝑖  are Graßmann numbers and 𝜙𝑖(𝑥) ordinary functions 

– in case of the Dirac field, 𝜙𝑖(𝑥) is chosen to be a basis of four-

component spinors.  

2-POINT FUNCTION IN TERMS OF FUNCTIONAL INTEGRALS: 

With the analogue derivation as for scalar fields (>15.2.2) we 

would arrive at the analogue result: 

⟨0|𝒯𝜓(𝑥1)�̅�(𝑥2)|0⟩ =
∫𝒟𝜓 𝒟�̅� exp(𝑖 ∫ 𝑑4𝑥 ℒ)𝜓(𝑥1)�̅�(𝑥2)

∫𝒟𝜓 𝒟�̅� exp(𝑖 ∫ 𝑑4𝑥 ℒ)
, 

the Lagrangian being the one of free Dirac fermions from 3.1, 

ℒ = �̅�(𝑖𝜕 − 𝑚)𝜓. 

(We write �̅� instead of 𝜓∗ for convenience; they are unitarily 

equivalent). This expression indeed yields (>15.5.1) 

⟨0|𝒯𝜓(𝑥1)�̅�(𝑥2)|0⟩ = �̃�𝐹(𝑥 − 𝑦) 

with �̃�𝐹  from 5.5 being the Greens function of 𝑖𝜕 − 𝑚. 

GENERATING FUNCTIONAL: 

Alternatively, we can find the Feynman propagator (and finally 

also other Feynman rules of interacting theories) as we did it for 

the scalar fields in 15.2: By using a generating functional. In 

analogy to the generating functional of scalar fields, we define 

𝑍[�̅�, 𝜂] ≔ ∫𝒟�̅� 𝒟𝜓 exp (𝑖 ∫𝑑4𝑥 (ℒ + �̅�𝜓 + �̅�𝜂)), 

where 𝜂(𝑥) is a Graßmann source field. 

For the free theory with ℒ = ℒ0 = �̅�(𝑖𝜕 − 𝑚)𝜓, the generating 

functional can be explicitly given as (>15.5.2) 

𝑍[�̅�, 𝜂] = 𝑍[0, 0] exp (−∫𝑑4𝑥 𝑑4𝑦 �̅�(𝑥) �̃�𝐹(𝑥 − 𝑦) 𝜂(𝑦)). 

We find that the rule 

⟨Ω|𝒯𝜓(𝑥1)�̅�(𝑥2)|Ω⟩ = (−𝑖
𝛿

𝛿�̅�(𝑥1)
) (𝑖

𝛿

𝛿𝜂(𝑥2)
)
𝑍[�̅�, 𝜂]

𝑍[0, 0]
|
�̅�,𝜂=0

 

extracts, in the free theory, correctly the Feynman propagator 

�̃�𝐹  (>15.5.3). This formula is obviously directly generalized to 

arbitrary 𝑛-point functions and holds also for interacting 

theories (this can easily be derived, working with the general 

form of 𝑍[�̅�, 𝜂] with the general Lagrangian ℒ given above). 
 

15.6 Interactions: QED 
The QED Lagrangian reads 

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝑖𝐷 − 𝑚)𝜓

= −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝑖𝜕 −𝑚)𝜓
⏟                

=ℒ0

− 𝑞�̅�𝐴𝜓,     𝑞 = −𝑒. 

In the formulas for the 𝑛-point functions and the generating 

functionals always appears the exponential with the Lagrangian 

exp (𝑖 ∫𝑑4𝑥 ℒ) = exp (𝑖 ∫𝑑4𝑥 ℒ0) exp (𝑖𝑒 ∫𝑑
4𝑥 �̅�𝐴𝜓). 

The Maxwell/photon and Dirac/fermion terms in ℒ0 yields the 

photon and fermion propagators, as we derived in 15.3 and 15.5. 

The exponential of the interaction term can be expanded, 

exp (−𝑖𝑒∫𝑑4𝑥 �̅�𝐴𝜓) = 1 +∫𝑑4𝑥 �̅�𝑖𝑒𝛾𝜇𝜓𝐴𝜇 +⋯, 

and gives the QED vertex 𝑖𝑒𝛾𝜇 ∫𝑑𝑥4, which equals 𝑖𝑒𝛾𝜇 ⋅

(2𝜋)4𝛿(momentum conervation) in momentum space (see 8.1). 

 
 
 
 
 

15.7 Schwinger-Dyson Equations 
TAYLOR EXPANSION OF A FUNCTIONAL: 

Consider a Lagrangian ℒ[𝜙 + 𝜖] with a small shift 𝜖(𝑥). The 

functional pendant to the Taylor expansion reads (>15.7.1) 

ℒ[𝜙 + 𝜖] = ℒ[𝜙] + 𝜖
𝛿

𝛿𝜙(𝑥)
∫𝑑4𝑥′ ℒ[𝜙] + 𝒪(𝜖2). 

For the example for the free real scalar field, the correction 

terms reads 
𝛿

𝛿𝜙(𝑥)
∫𝑑4𝑥′ ℒ[𝜙(𝑥′)] = −(☐ +𝑚2)𝜙(𝑥). 

THE SCHWINGER-DYSON EQUATIONS: 

The Schwinger-Dyson equations are given by (>15.7.2) 

⟨(
𝛿

𝛿𝜑(𝑥)
∫𝑑4𝑥′ ℒ [𝜑(𝑥′)])  𝜑(𝑥1)⋯𝜑(𝑥3)⟩                                    

                                                     = ∑⟨𝜑(𝑥1)⋯ 𝑖𝛿(𝑥 − 𝑥𝑖)⋯𝜑(𝑥𝑛)⟩

𝑛

𝑖=1

. 

As we saw above, the term inside the normal brackets on the 

left-hand side of the equation equals an operator acting on a 

field. The angular brackets are now defined as a time-ordered 

correlation function, where the operator from those normal 

brackets is placed outside. That is, in the example of the real free 

scalar field, the Schwinger-Dyson equations read 

−(☐ +𝑚2)⟨Ω|𝒯 𝜙(𝑥) 𝜙(𝑥1)⋯𝜙(𝑥𝑛)|Ω⟩

=∑⟨Ω|𝒯 𝜙(𝑥1)⋯ 𝑖𝛿(𝑥 − 𝑥𝑖)⋯𝜙(𝑥𝑛)|Ω⟩

𝑛

𝑖=1

. 

On the right-hand side, in every term of the sum the 𝑖-th field is 

missing and is instead replaced by a 𝛿-function. Since this 𝛿-

function vanishes for all 𝑥 ≠ 𝑥𝑖 , the Schwinger-Dyson equations 

tell us that the field 𝜙(𝑥) inside any expectation value obeys the 

Klein-Gordon equation (☐ +𝑚2)𝜙(𝑥) = 0 for all 𝑥 ≠ 𝑥𝑖; that is 

for all 𝑥 which do not appear as an argument of another field of 

the correlation function. The terms on the right-hand side are 

also called “contact terms”, since they appear only for “contacts” 

of the variables 𝑥 and 𝑥𝑖 .  

NOETHER’S CURRENT CONSERVATION: 

For the Schwinger-Dyson equation giving us the equations of 

motion (up to contact points) from above, we applied a small 

shift to the field 𝜙, which left the integral unchanged. We can 

also apply the more general transformation from 3.2 

𝑥𝜇 → 𝑥′𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇 ,          𝜑𝑎(𝑥) → 𝜑𝑎
′ (𝑥′) = 𝜑𝑎(𝑥) + 𝛿𝜑𝑎(𝑥) 

(at least as long as they are unitary). This yields the current 

conservation form of the Schwinger-Dyson equations (>15.7.3), 

⟨𝜕𝜇𝑗
𝜇(𝑥) 𝜑𝑎1(𝑥1)⋯𝜑𝑎𝑛(𝑥𝑛)⟩

=∑⟨𝜑𝑎1(𝑥1)⋯  Δ𝜑𝑎𝑖(𝑥)(−𝑖)𝛿(𝑥 − 𝑥𝑖)⋯ 𝜑𝑎𝑛(𝑥𝑛)⟩

𝑛

𝑖=1

, 

where 𝑗𝜇  is Noether’s current 

𝑗𝜇 = −𝒯    𝜈
𝜇
 Δ𝑥𝜈 +

𝜕ℒ

𝜕(𝜕𝜇𝜑𝑎)
 Δ𝜑𝑎, 

where 𝛿𝑥𝜇 = 𝛿𝜔 Δ𝑥𝜇 , 𝛿𝜑𝑎 = 𝛿𝜔 Δ𝜑𝑎  for an infinitesimal 

parameter 𝛿𝜔. 

WARD-TAKAHASHI IDENTITY: 

In QED, the transformation 𝜓 → 𝑒−𝑖𝛼𝜓 (leaving 𝐴 and the 

coordinates untransformed) yields the current 𝑗𝜇 = �̅�𝛾𝜇𝜓 (see 

3.5) and the Schwinger-Dyson equations (>15.7.4) 

𝜕𝜇⟨0|𝒯 𝑗
𝜇(𝑥) 𝜓(𝑥1)�̅�(𝑥2)|0⟩

= −(𝛿(𝑥 − 𝑥1) − 𝛿(𝑥 − 𝑥2))⟨0|𝒯 𝜓(𝑥1)�̅�(𝑥2)|0⟩. 

Fourier transformation directly yields (>14.7.4) 

𝑘𝜇ℳ
𝜇(𝑘; 𝑝; 𝑞) = −𝑔(ℳ0(𝑝, 𝑞 − 𝑘) −ℳ0(𝑝 + 𝑘; 𝑞)), 

which is the Ward-Takahashi identity for two external fermions. 



16 Systematic Renormalization 
 

16.1 Superficial Degree of Divergence 
DEFINITIONS OF ELEMENTS OF A DIAGRAM: 

Let’s define the number of diagram elements for 𝑖 = e, γ as 

𝑁𝑖 = external particles,          𝑃𝑖 = propagators,  

𝑉 = vertices,                              𝐿 = loops.                

After applying Feynman rules and evaluating all the 𝛿-functions, 

only momentum integrals over loops are left. Each loop 

therefore comes with a factor 𝑑𝑑𝑘. A photon propagator 

contributes a factor ∼ 𝑘−2 and a fermion propagator ∼ 𝑘−1 to 

the integral. 

THE SUPERFICIAL DEGREE OF DIVERGENCE: 

Let 𝐷 be the superficial degree of divergence, that is the powers 

of momentum in the numerator minus the ones in the 

denominator. Then, in 𝑑 dimensions, 

𝐷 = 𝑑 ⋅ 𝐿 − 𝑃e − 2𝑃γ. 

If Λ is a momentum cut-off, we expect that 

divergence ∼ {
Λ𝐷 ,   𝐷 > 0,
ln Λ , 𝐷 = 0,
0,     𝐷 < 0 

 

(that is, no divergence for 𝐷 < 0). This naïve expectation is often 

wrong for one of three reasons: 

 – A diagram can contain a divergent sub-diagram making 

 – its divergence worse that indicated by 𝐷. 

 – Symmetries (like the Ward identity) may reduce the  

 – divergence of a diagram. 

 – A trivial diagram with no loops and no propagators has 

 – 𝐷 = 0 but no divergence. 

RENOMALIZABILITY: 

The superficial degree of divergence can be given as (>16.1.1) 

𝐷   =    𝑑 +
𝑑 − 4

2
𝑉 −

𝑑 − 2

2
𝑁γ −

𝑑 − 1

2
𝑁e     =

𝑑=4
    4 − 𝑁γ −

3

2
𝑁e. 

Note, that the number of vertices 𝑉 increases for higher orders 

of perturbation theory, but 𝑁γ, 𝑁e do not. Thus, for 𝑑 < 4, higher 

orders of perturbation theory are even “more convergent” than 

at lower orders, but for 𝑑 > 4, for any amplitude the diagrams 

diverge at some high enough order of perturbation theory. 

Also, in 𝑑 dimensions, the mass dimension (in natural units) of 

the QED coupling constant is (>16.1.2) 

[𝑔] = −
𝑑 − 4

2
. 

That the mass dimension of the coupling constant is the negative 

pre-factor of the 𝑉 in the formula for 𝐷 is a general fact for 

quantum field theories.  

Based on these observations, we define the following types of 

quantum field theories: 

 – Super-Renormalizable Theory: [𝑔] > 0 

 –  Only a finite number of diagrams superficially  

  diverge. 

 – Renormalizable Theory:  [𝑔] = 0 

  Only a finite number of amplitudes superficially diverge, 

  but to all orders of perturbation theory. 

 – Non-Renormalizable Theory: [𝑔] < 0 

  All amplitudes diverge at sufficient high order in  

  perturbation theory. 

 
 
 
 
 
 
 
 

16.2 Potentially Divergent QED Amplitudes 
OVERVIEW: 

According to 𝐷 = 4 − 𝑁γ − 3𝑁e/2, only amplitudes with a small 

number of external legs have 𝐷 ≥ 0. In fact, there are only seven: 

 
Only three of them (the red ones) cause the problem of 

divergence (as we will investigate below). Other diagrams may 

be divergent, but only when they contain one of these three as a 

subdiagram.  

We can restrict ourselves to amputated diagrams, that is, 

without spinors/polarization vectors of external particles, since 

they do not appear under potentially divergent loop integrals.  

A: THE ZERO-POINT FUNCTION: 

The zero-point function is badly divergent; but this object only 

shifts the vacuum energy and is irrelevant for S-matrix elements. 

B/D: THE PHOTON ONE- AND THREE-POINT FUNCTION: 

The amplitudes B and D vanish due to Furry’s theorem, which 

states that diagrams with an odd number of external photons 

and no external electrons vanish (>16.2.1).  

E: PHOTON-PHOTON SCATTERING: 

Without proofing it: This amplitude is not divergent but finite. 

F: ELECTRON SELF-ENERGY: 

If we call the (amputated) electron self-energy ℱ and expand it 

in 𝑝, 

ℱ(𝑝) = 𝐹0 + 𝐹1𝑝 + 𝐹2𝑝
2 +⋯, 

we find that 𝐹0 and 𝐹1 are logarithmically divergent and all 𝐹𝑛≥2 

are finite (>16.2.2). We also know from 13.3, that 𝐹0 contains the 

mass: 

ℱ(𝑝) ∼ 𝑚 lnΛ + 𝑝 ln Λ + (finite terms) 

(were the proportionality sign holds for each term individually). 

G: VERTEX: 

By the same argument as for the electron self-energy in 

(>16.2.2), we can expand the vertex amplitude 𝒢 in powers of 

the three external momenta; again, differentiating with respect 

to one of them will lower the degree of divergence by 1. Since G 

starts out with 𝐷 = 0 (in contrast to F), already the first order in 

the momenta will be finite and 𝒢 has only a divergent constant: 

𝒢 ∼ lnΛ + (finite terms) 

(we assume here, that infrared divergencies are already 

regulated). 

C: PHOTON SELF-ENERGY: 

We found in 13.4 that the photon self-energy has the form 

Π𝜇𝜈(𝑞) = (𝑞2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈)Π(𝑞2). 

Thus, the constant and linear terms of a Taylor series of Π𝜇𝜈  in 𝑞 

vanish. By the argument above and in (>16.2.2), third and higher 

order terms are finite. In 13.4 we found that Π(𝑞2) has only a 

constant divergent term with ∼ 1/𝜖. This pole from dimensional 

regularization is equivalent to a logarithmical Pauli-Villars 

divergence (see 12.7). Thus, its amplitude is 

𝒞 ∼ 𝑞2 ln Λ + (finite terms). 

 
 
 
 
 
 
 
 
 
 
 
 
 



16.3 Counter Term Renormalization 
COUNTER TERMS: 

We saw in 13.5 that we can write full propagators and the full 

vertex factor as finite renormalized propagators times infinite 

factors of 𝑍𝑖; but those factors cancel in the end. Let us now take 

those renormalized propagators alone and expand them to NLO. 

Then, NLO contains the infinite one loop corrections plus a so-

called counter term (denoted with a circled cross) that cancels 

the infinity of the loops (>16.3.1): 

 
By expanding the left-hand side, we find 

                                         ≔    𝑖(𝛿2
(2)𝑝 − 𝛿𝑚

(2)), 

                                         ≔    −𝑖(𝑞2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈)𝛿3
(2), 

                                         ≔    𝑖𝑔𝛾𝜇𝛿1
(2). 

 

COUNTER TERM LAGRANGIAN: 

Let us now construct a Lagrangian, that naturally contains those 

counter terms. We also want a Lagrangian, that does not yield 

factors of 𝑍𝑖  in the first place, since the cancel in the end anyway. 

Those factors originate from chapter 7, where we found that for 

an interacting theory 
⟨Ω|𝒯 𝜙0(𝑥)𝜙0(𝑦)|Ω⟩ = 𝑍𝐷𝐹(𝑥 − 𝑦) + ⋯. 

Let us call all the fields we have encountered so far “bare” fields 

and add an index 0, as we already started to do in the equation 

above. Obviously, we can eliminate factors 𝑍𝑖  by the field 

rescaling or renormalization 𝜙0 = √𝑍𝜙. For QED, let us then use 

𝜓0 = √𝑍2𝜓,        𝐴0
𝜇
= √𝑍3𝐴

𝜇 ,        𝑔0 =
𝑍1

𝑍2√𝑍3
𝑔,        𝑚0 = 𝑍𝑚𝑚, 

where the third equation comes from 13.5 and te last defines 𝑍𝑚. 

Plugging in these relations into the bare QED Lagrangian and 

using then  

𝑍1,2,3 = 1 + 𝛿1,2,3,          𝑍2𝑍𝑚𝑚 = 𝑚 + 𝛿𝑚, 

we find the renormalized Lagrangian (>16.3.2) 

ℒ = −
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝑖𝜕 −𝑚)𝜓 + 𝑔�̅�𝛾𝜇𝜓𝐴𝜇                         

−
1

4
𝛿3𝐹𝜇𝜈𝐹

𝜇𝜈 + �̅�(𝛿2𝑖𝜕 − 𝛿𝑚)𝜓 + 𝑔𝛿1�̅�𝛾
𝜇𝜓𝐴𝜇. 

The first three terms are precisely the terms of the bare QED 

Lagrangian, but now with the renormalized fields, charge and 

mass. The second three terms are the counter terms. 

FEYNMAN RULES FOR COUNTER TERM LAGRANGIAN: 

Our goal was to construct a Lagrangian that naturally yields the 

Feynman rules for counter term lines of Feynman diagrams as 

above. Let us now see if our renormalized Lagrangian 

reproduces exactly these expressions. 

Since all the counter terms in the Lagrangian are at least of order 

𝛼, we treat them as perturbation/interaction terms (>16.3.3). 

We verify that this newly constructed Lagrangian yields the 

counter term Feynman rules above  

 for the electron propagator in (>16.3.4),  

 for the photon propagator in (>16.3.5) and  

 for the vertex factor  in (>16.3.6). 

 
 
 
 
 
 

16.4 Renormalization Conditions and Schemes 
In chapter 13 we have computed the explicit form of the 𝛿’s. 

However, from the viewpoint of the counter term 

renormalization, their form does not follow naturally from the 

counter term Lagrangian. After all, in the counter term 

Lagrangian, the 𝛿’s play basically the role of “free” parameters. 

Let us therefore summarize the rules for how to evaluate the 𝛿’s. 

ON-SHELL RENORMALIZATION CONDITIONS: 

The requirements that the pole of the propagator should lie at 

the physical mass 𝑚 at that it should have residue 1 as well as 

that the physical elementary charge 𝑒 is the quantity that 

appears as a vertex factor at 𝑞2 = 0 can be translated into the  

following on-shell renormalization conditions (>16.4.1) 

Σ𝑅(𝑝 = 𝑚) = 0,          
𝑑Σ𝑅(𝑝)

𝑑𝑝
|
𝑝=𝑚

= 0,

Π𝑅(𝑞 = 0) = 0,          Γ𝑅
𝜇(𝑞 = 0) = 𝛾𝜇.

 

Since the definitions of Σ𝑅 , Π𝑅  and Γ𝑅
𝜇

 contain the counter term 

𝛿’s, these renormalization conditions can be used to fix the 𝛿’s. 

The conditions are constructed in such a way, that the explicit 

expressions for the 𝛿’s coincide with the ones that we found 

naturally in chapter 13, namely (>16.4.1) 

𝛿2
(2) =

𝜕Σ(2)(𝑝)

𝜕𝑝
|
𝑝=𝑚

,          𝛿𝑚
(2) = 𝛿2

(2)𝑚 − Σ(2)(𝑚),

𝛿3
(2) = Π(2)(0),                     𝛿1

(2) = −𝛿𝐹1(0).               

 

Explicit formulas are given (without derivation) for an overview 

in (>16.4.2). 

MINIMAL SUBTRACTION RENORMALIZATION SCHEMES: 

Still missing … 
 

16.5 About the Charge Renormalization 
We know already from 13.5 that 𝛿𝑍2 = −𝛿𝐹1(0), from which 

follows that (>15.5.1) 

𝛿1 = 𝛿2          ⟺           𝑍1 = 𝑍2, 

at least to order 𝛼. One can proof that this relation holds to all 

orders of perturbation theory, which has an interesting 

implication. We introduced the physical charge in 13.5 as 

𝑒 ≔
𝑍2√𝑍3(0)

𝑍1
𝑒0 = √𝑍3(0)𝑒0. 

Suppose, we want to consider two species of fermions, say 

electrons and muons. The muon self-energy 𝑍2
′  and the muon-

photon vertex 𝑍1
′  depend on properties of the muon, like its 

mass; they are not equal to the one of the photon: 𝑍1,2
′ ≠ 𝑍1,2, 

however 𝑍1
′ = 𝑍2

′  obviously holds for fermions of any mass. 

Thus, also the physical charge of the muon  

𝑒′ =
𝑍2
′√𝑍3(0)

𝑍1
′ 𝑒0 = √𝑍3(0)𝑒0 = 𝑒 

would differ from the electrons charge, if not 𝑍1
′ = 𝑍2

′  and 𝑍1 =

𝑍2 were true. Hence, the equality 𝑍1 = 𝑍2 is the reason that there 

is a single universal charge for all fermion species.  

 
 
 
 
 
 
 
 
 
 
 
 
 



16.6 Results for φ4 Theory 
SUPERFICIAL DEGREE OF DIVERGENCE: 

For the Lagrangian 2ℒ = (𝜕𝜇𝜙)
2 −𝑚2𝜙2 − 𝜆𝜙𝑛/𝑛!, a diagram 

with 𝑉 vertices and 𝑁 external lines in 𝑑 dimensions has the 

superficial degree of freedom (>16.1.3) 

𝐷 = 𝑑 + (𝑛
𝑑 − 2

2
− 𝑑)

⏟        
=−[𝜆]

𝑉 −
𝑑 − 2

2
𝑁    =

𝑛=4

𝑑=4
    4 − 𝑁. 

Again, the prefactor of the number of vertices is the negative 

mass dimension of the coupling constant. 

POTENTIALLY DIVERGENT AMPLITUDES: 

The Theory (the Lagrangian) is invariant under 𝜙 → −𝜙; 

therefore all 𝑛-point functions with odd 𝑛 vanish. Thus, the only 

divergent amplitudes are those with 𝑁 = 0, 2, 4 external lines.  

COUNTER TERMS: 

Using 𝜙 = √𝑍𝜙𝑟 , 𝛿𝑍 ≔ 𝑍 − 1, 𝛿𝑚 ≔ 𝑚0
2𝑍 − 𝑚2, 𝛿𝜆 ≔ 𝜆0𝑍

2 − 𝜆, 

the 𝜙4 theory Lagrangian becomes 

ℒ = ℒ[𝜙𝑟] +
1

2
𝛿𝑍(𝜕𝜇𝜙𝑟)

2
−
1

2
𝛿𝑚𝜙𝑟

2 −
𝛿𝜆
4!
𝜙𝑟
4, 

where ℒ[𝜙𝑟] is the usual Lagrangian with the replacement 𝜙 →

𝜙𝑟 . The Feynman rules of the counter terms are 

  = 𝑖(𝑝2𝛿𝑍 − 𝛿𝑚) ,                                      = −𝑖𝛿𝜆. 

RENORMALIZATION CONDITIONS: 

As renormalization conditions we choose that the full 

propagator is 𝑖 (𝑝2 −𝑚2)⁄ + (terms regular at 𝑝2 = 𝑚2). This is 

equivalent to 𝒫2(𝑚2) = 0 and 𝑑𝒫2 𝑑𝑝2⁄ |𝑝2=𝑚2 = 0, if −𝑖𝒫2(𝑝2) 

is the 1PI. Also, we impose that the full vertex is simply −𝑖𝜆 at 

zero momentum (that is 𝑠 = 4𝑚2, 𝑡 = 𝑢 = 0). 



17 The Renormalization Group 
 

17.1 Analogy to Statistical Mechanics 
FUNCTIONAL INTEGRAL IN EUCLIDEAN COORDINATES: 

Performing a Wick rotation to the 𝑥-variables in the formula of 

the generating function for scalar fields from 15.2, it reads in 

terms of the Euclidean coordinates as follows (>17.1.1): 

𝑍[𝐽] ≔ ∫𝒟𝜙 exp (−∫𝑑4𝑥𝐸  (ℒ𝐸 − 𝐽𝜙)), 

where 2ℒ𝐸 = (𝜕𝐸
𝜇
𝜙)

2
+𝑚2𝜙2 + 2𝜆𝜙4/4!. Note that ℒ𝐸  is 

bounded from below and becomes large for large 𝜙 – just like an 

energy. From this generating functional, we find for the 

correlation function (>17.1.2) 

⟨Ω|𝒯𝜙(𝑥𝐸1)𝜙(𝑥𝐸2)|Ω⟩ ∼ ∫𝑑
4�̅�𝐸

𝑒𝑖𝑘𝐸⋅(𝑥𝐸1−𝑥𝐸2)

𝑘𝐸
2 +𝑚2

∼ 𝑒−𝑚|𝑥𝐸1−𝑥𝐸2|. 

INTERPRETATION WITH STATISTICAL MECHANICS: 

It can be shown that the correlation function for spins has an 

analogous behaviour: 

〈𝑠(�⃗�)𝑠(0)〉 ∼ 𝑒−𝜉
−1𝑥 ,          𝜉−1 ∼ (𝑇 − 𝑇𝑐)

1 2⁄ , 

where 𝜉 is the correlation length and 𝑇𝑐  the critical temperature.  

Consider a field theory for which we imposed a momentum 

cutoff Λ.  A reasonable cutoff is surely much larger than the 

particle’s mass: Λ ≫ 𝑚. We adjusted the mass to satisfy this 

condition when we turned the infinite 𝑚0 into the finite physical 

mass 𝑚. In the same way, we can adjust the “mass” 𝜉−1 of 

statistical mechanics such that 𝑎−1 ≫ 𝜉−1 ⟺ 𝜉 ≫ 𝑎, where 𝑎 is 

the spacing of the spins. We adjust 𝜉−1 to a small value by 

adjusting the temperature 𝑇 close to 𝑇𝑐 .  

The analogy therefore is: 

 – By adjusting the mass 𝑚 to a region where Λ ≫ 𝑚, we  

  find correlations of the fields 𝜙 over large distances much 

  lager than 1/Λ. 

 – By adjusting  𝜉 via the temperature 𝑇 to a region where  

  𝑎−1 ≫ 𝜉−1, we find correlations of the spins 𝑠 over large  

  distances much larger than 𝑎. 
 

17.2 Wilson’s Approach – Effective Lagrangian 
LOW AND HIGH MOMENTUM CONTRIBUTIONS: 

To include a momentum cutoff Λ into our description by means 

of the functional integral in 𝑍, we integrate not over 𝜙(𝑥) but 

over its Fourier components 𝜙(𝑘). Since Fourier 

transformations are unitary, 𝒟𝜙(𝑥) = 𝒟𝜙(𝑘) (>17.2.1): 

𝑍[0] = ∫[𝒟𝜙]Λ exp (−∫𝑑
𝑑𝑥 ℒ). 

𝑥 is still to be understood as a Euclidean coordinate! We just 

dropped the index 𝐸 for simplicity. The symbol  
[𝒟𝜙]Λ ≔ Π|𝑘|<Λ 𝑑𝜙(𝑘) 

ensures that we integrate only over momentum below the cutoff. 

Let’s now divide the integral [𝒟𝜙]Λ into two regions: One region 

with 0 ≤ 𝑘 < 𝑏Λ and one with 𝑏Λ ≤ 𝑘 < Λ for some fraction 𝑏 

with 0 < 𝑏 < 1. For that purpose, we (re-)define 

𝜙(𝑘) ≔ {
𝜙(𝑘), 0 ≤ 𝑘 < 𝑏Λ
0,       otherwise   

,     �̂�(𝑘) ≔ {
𝜙(𝑘), 𝑏Λ ≤ 𝑘 < Λ
0,       otherwise   

. 

Thus, [𝒟𝜙]Λ → [𝒟𝜙]𝑏Λ [𝒟�̂�]𝑏Λ→Λ. 

THE LAGRANGIAN IN TERMS OF 𝝓- AND �̂�-FIELDS: 

Also, we can replace the old 𝜙 by 𝜙 + �̂� with the newly defined 

𝜙’s. The replacement yields (>17.2.2) 

ℒ[𝜙] → ℒ[𝜙] +
1

2
(𝜕𝜇�̂�)

2
+
𝑚2

2
�̂� +

𝜆

4!
(𝜙 + �̂�)

4
. 

We can now perform the integrals 𝒟�̂� and we will be left with 

some effective Lagrangian ℒeff, which only contains the field 𝜙. 

In this Lagrangian there will be new interaction terms, remnants 

of the integrated �̂�-terms. Those interaction terms then describe 

the effects of the high-momentum region between 𝑏Λ and Λ.  

THE �̂�-PROPAGATOR: 

We are not going to compute all the new interaction terms 

arising from the elimination of the �̂� fields by integration. But 

let’s consider an example to see how this works in principle. 

The kinetic �̂�-term leads to a propagator in momentum space of 

the form (>17.2.3) 

〈�̂�(𝑘)�̂�(𝑝)〉 =
(2𝜋)𝑑𝛿(𝑘 + 𝑝)

𝑘2
Θ(𝑘), 

where Θ(𝑘) ensures that  𝑏Λ ≤ 𝑘 < Λ. 

EFFECTIVE MASS CORRECTION: 

We assume that all external particles have momentum < 𝑏Λ; 

that is, there are no external �̂�-particles. Consider for example 

the 𝜙2�̂�2 term from the expansion of (𝜙 + �̂�)4. When expanded 

to a single power (that is, NLO), this term will include all 

external fields and additionally obviously the factors 𝜙2�̂�2. By 

Wick’s theorem, we can form propagators of pairs of fields of the 

same type – there is only one pair of �̂�-fields. Thus, we can 

replace �̂�2 by the propagator and the 𝜙2�̂�2 becomes effectively 

a correction to the 𝜙-mass term (>17.2.4): 

−
𝜆

4
∫𝑑𝑑𝑥 𝜙2�̂�2 = −

Δ𝑚2

2
∫𝑑𝑑𝑥 𝜙2,                                        

where Δ𝑚2 ∼ 𝜆Λ𝑑−2 is a positive constant. If we draw �̂�-

propagators as a double line, this correction can be drawn as a 

vertex in a Feynman diagram. 

EFFECTIVE INTERACTION CORRECTION: 

At order 𝜆2, we will have, among other contributions, a term 

(𝜙2�̂�2)2 with two of those vertices. This will be a correction to 

the 𝜙4-interaction, since this diagram can be given as (>17.2.5) 

1

2!
(−
𝜆

4
∫𝑑𝑑𝑥 𝜙2�̂�2)

2

≈ −
Δ𝜆

4!
∫𝑑𝑑𝑥 𝜙4(𝑥),                           

where Δ𝜆 ∼ −𝜆2 ln 1/𝑏 for 𝑑 → 4. 

FURTHER CORRECTIONS: 

The �̂�-fields can mediate all kinds of interactions for the 𝜙-

fields. For example, the second order of the term 𝜙3�̂� (which 

emerges from (𝜙 + �̂�)4) generates a contribution to a 𝜙6 

interaction: 

 
For the correction of the 𝜙4-interaction above, we simplified the 

situation by neglecting the momenta of the external particles 

compared to the virtual �̂�-particles. A more exact treatment 

would Taylor expand in these momenta, which would yield 

derivative interactions like 𝜙2(𝜕𝜇𝜙)2. 

THE EFFECTIVE LAGRANGIAN: 

The effective Lagrangian is therefore of the form 

ℒeff(𝜙) =
1

2
(𝜕𝜇𝜙)2 +

𝑚2

2
𝜙 +

𝜆

4!
𝜙4 + (all connected diagrams), 

where all the connected diagrams only depend on 𝜙-fields after 

the �̂�-fields are eliminated as in the examples above. With this 

Lagrangian, we can now compute correlation functions or S-

matrix elements, where the momenta of the possible virtual 𝜙-

particles appearing in the diagrams are only integrated up to 𝑏Λ. 

The corrective terms in the Lagrangian precisely compensate for 

this lowered cutoff. 

As we learned above, we know that the effective Lagrangian 

must be of the general form 

ℒeff =
1

2
(1 + Δ𝑍)(𝜕𝜇𝜙)

2
+
1

2
(𝑚2 + Δ𝑚2)𝜙2 +

1

4!
(𝜆 + Δ𝜆)𝜙4 

+ Δ𝐶(𝜕𝜇𝜙)
4
+ Δ𝐷𝜙6 +⋯.                                           

In this way, we have started out with a Lagrangian ℒ and cutoff Λ 

and turned it into a Lagrangian ℒeff with cutoff 𝑏Λ: 

𝑍[0] = ∫[𝒟𝜙]Λ exp(−∫ 𝑑
4𝑥 ℒ)   →   ∫[𝒟𝜙]𝑏Λ exp(−∫ 𝑑

4𝑥 ℒeff). 

 



17.3 Wilson’s Approach – Renormalization Group Flows 
RESCALING: 

To compare the different functional integrals at the very end of 

17.2, we rescale the momenta, distances and fields in the form of 

the functional integral according to 

𝑘′ ≔ 𝑘 𝑏⁄ ,          𝑥′ ≔ 𝑥𝑏,          𝜙′ ≔ √𝑏2−𝑑(1 + Δ𝑍𝜙. 

Since 𝑘 is integrated up to 𝑏Λ, the new 𝑘′ is integrated up to Λ. 

This rescaling brings the action of the effective Lagrangian from 

the end of 17.2 into the form (>17.3.1) 

𝑑𝑑𝑥 ℒeff = 

𝑑𝑑𝑥′ (
1

2
(𝜕𝜇

′𝜙′)
2
+
𝑚′2

2
𝜙′

2
+
𝜆

4!
𝜙′4 + 𝐶′(𝜕𝜇

′𝜙′)
4
+ 𝐷′𝜙′6 +⋯), 

where (𝑍 ≔ 1 + Δ𝑍; 𝐶 = 𝐷 = 0) 

𝑚′2 ≔ (𝑚2 + Δ𝑚2)𝑍−1𝑏−2,          𝜆′ ≔ (𝜆 + Δ𝜆)𝑍−2𝑏𝑑−4, 

    𝐶′ ≔ (𝐶 + Δ𝐶)𝑍−2𝑏𝑑,                     𝐷′ ≔ (𝐷 + Δ𝐷)𝑍−3𝑏2𝑑−6. 

The old Lagrangian could be written in exactly the same form as 

above and the parameter values 𝐶 = 𝐷 = 0. Thus, we have 

written the operation of integrating out the high momenta 𝑏Λ ≤

𝑘 < Λ as a transformation of the action. We could now integrate 

out another shell of momenta 𝑐Λ ≤ 𝑘 < 𝑏Λ with 0 < 𝑐 < 𝑏, 

which just gives a further iteration of the above transformation. 

For 𝑏 → 1, the transformation becomes a continuous one. We 

can then describe the result of integration over high-momentum 

degrees of freedom of a field theory as a trajectory (or a “flow”) 

in the space with tuples (𝑚2, 𝜆, 𝐶, 𝐷, … ), in which each point 

describes a possible Lagrangian (thus, also “Lagrangian space”). 

EXPLICIT VALUE FOR THE NEW LAMBDA: 

Recall that we know the value of Δ𝜆 from (>17.2.5). The leading 

order of Δ𝑍 is 𝜆2(we show 𝛿𝑍 = 𝒪(𝜆
2) in (>17.4.4)). Thus 

𝜆′ = 𝜆 + Δ𝜆 + 𝒪(𝜆3) = 𝜆 −
3𝜆2

(4𝜋)2
ln 1 𝑏⁄           (𝑑 = 4). 

FIXED POINTS AND NEARBY RESCALING RELATIONS: 

We know from 17.2 that Δ𝑚2 ∼ 𝜆 and Δ𝜆 ∼ 𝜆2. Also Δ𝐶, Δ𝐷,… 

will depend be ∼ 𝜆𝑎 , 𝑎 > 0. Thus, our transformation above will 

leave the point (0, 0, … ) unchanged, that is 
(𝑚2, 𝜆, 𝐶, … ) = (0, 0, 0, … )     ⟹      (𝑚′2, 𝜆′, 𝐶′, … ) = (0, 0, 0, … ). 

Such points in the Lagrangian space are called fixed points. This 

specific fixed point corresponds to the free-field Lagrangian 

ℒ0 = (𝜕𝜇𝜙)
2/2. In its vicinity, we can ignore the correction 

terms Δ𝑍, Δ𝑚2, Δ𝜆, Δ𝐶, …, such that the transformation becomes 

𝑚′2 = 𝑚2𝑏−2,          𝜆′ = 𝜆𝑏𝑑−4,          𝐶′ = 𝐶𝑏𝑑,          𝐷′ = 𝐷𝑏2𝑑−6. 

RELEVANT, MARGINAL AND IRRELEVANT OPERATORS: 

Dependent on the power 𝛼 of 𝑏, the parameters grow, decay or 

remain unchanged. Depending on this behaviour, we classify the 

terms in the Lagrangian (which are operators) as 
Parameter Behaviour Classification of Operator

𝛼 < 0: growing relevant
𝛼 = 0: remain marginal
𝛼 > 0: decaying irrelevant

 

Starting in the vicinity of a fixed point, the Lagrangian is carried 

away from the fix point along growing parameters and shifted 

into the direction of the fixed point along decaying parameters.  

CONNECTION TO THE RENORMALIZABILITY: 

In general, for an operator with 𝑛 powers of 𝜙 and 𝑚 

derivatives, the exponent of the transformation reads (>17.3.2) 

𝛼 = 𝑑𝑛𝑚 − 𝑑,          𝑑𝑛𝑚 ≔ 𝑛(𝑑 2⁄ − 1) + 𝑚 

(for example: 𝜙2(𝜕𝜇𝜙)
2 ⟹ 𝑛 = 4,𝑚 = 2). Here, 𝑑𝑛𝑚 is the mass 

dimension of the operator and −(𝑑𝑛𝑚 − 𝑑) is the mass 

dimension of the coefficient (>17.3.3). Thus, relevant (𝛼 < 0) 

and marginal (𝛼 = 0) operators correspond to super-

renormalizable ([coeff.] > 0) and renormalizable ([coeff.] = 0) 

interaction terms respectively (see 16.1). And non-

renormalizable interaction terms correspond to irrelevant 

operators, that is they die away. 
 

17.4 Callan-Symanzik Equation for φ4 Theory 
NEW RENORMALIZATION CONDITIONS: 

The renormalization conditions for 𝜙4 theory from 16.6, 

𝒫2(𝑚2) = 0 and 𝑑𝒫2 𝑑𝑝2⁄ |𝑝2=𝑚2 = 0, if −𝑖𝒫2(𝑝2) is the 1PI, 

yield counter term parameters 𝛿𝑋 with singularities in the limit 

𝑚2 → 0 (without proof). Since we are primarily interested in 

scales far above the physical mass, singularities in this limit are 

problematic. 

Therefore, we choose an arbitrary momentum scale 𝑀 and 

“define the theory at scale 𝑀” by imposing 

𝒫2(−𝑀2) = 0,             𝑑𝒫2 𝑑𝑝2⁄ |𝑝2=−𝑀2 = 0, 

(full vertex) = −𝑖𝜆     at     𝑠 = 𝑡 = 𝑢 = −𝑀2. 

DERIVATION OF THE CALLAN-SYMANZIK EQUATIONS: 

Consider massless 𝜙4 theory and the 𝑛-point function 

𝐺(𝑛)({𝑥𝑖}, 𝜆,𝑀) ≔ ⟨Ω|𝒯𝜙𝑟1⋯𝜙𝑟𝑛|Ω⟩ = 𝑍
−𝑛/2⟨Ω|𝒯𝜙1⋯𝜙𝑛|Ω⟩, 

where 𝜙𝑖 ≔ 𝜙(𝑥𝑖) = √𝑍𝜙𝑟𝑖. A shift 𝑀 → 𝑀 + 𝛿𝑀 leaves the bare 

𝑛-point function invariant, but induces shifts 𝜆 → 𝜆 + 𝛿𝜆 and 

√𝑍 → √𝑍(1 + 𝛿𝜂). From these shifts, we find (>17.4.1) 

(𝑀
𝜕

𝜕𝑀
+ 𝛽(𝜆)

𝜕

𝜕𝜆
+ 𝑛𝛾(𝜆))𝐺(𝑛)({𝑥𝑖}, 𝜆,𝑀) = 0, 

𝛽(𝜆) ≔ 𝑀
𝛿𝜆

𝛿𝑀
,          𝛾(𝜆) ≔ 𝑀

𝛿𝜂

𝛿𝑀
. 

COMPUTATION OF 𝜷: 

The 4-point function can be computed explicitly (>17.4.2): 

𝐺(4) = 𝐴 (−𝑖𝜆 − 𝜆2𝐵 − 𝑖𝛿𝜆),     𝛿𝜆 = 𝐶𝜆
2 (
2

𝜖
− ln𝑀2 + 𝐷), 

where 𝐴, 𝐵, 𝐶, 𝐷 are finite constants, independent of 𝜆 and 𝑀. 

Using the Callan-Symanzik equation, we find (>17.4.3) 

𝛽(𝜆) = 2𝐶𝜆2 =
3𝜆2

(4𝜋)2
+ 𝒪(𝜆3). 

COMPUTATION OF 𝜸: 

In (>17.4.4) we proof that the order 𝜆 contribution to the 2-point 

function always vanishes: 

 
That is, in massless theory, 𝐺(2) = 𝑖 𝑝2⁄ + 𝒪(𝜆2). From this we 

can conclude 

𝛾 = 0 + 𝒪(𝜆2). 

To compute the 𝜆2 contribution to 𝛾, one would need to compute 

the two-loop contribution to the 2-point function. The result 

would be (without proof) 

𝛾 =
𝜆2

12(4𝜋)4
. 

 

17.5 General Expressions for β and γ 
GENERAL EXPRESSION FOR 𝜸: 

By its definition, the function 𝛾(𝜆) can be given as (>17.5.1) 

𝛾(𝜆)    ≔    𝑀
𝛿𝜆

𝛿𝑀
   =    

𝑀

2𝑍

𝜕𝑍

𝜕𝑀
   ≈    

𝑀

2

𝜕𝛿𝑍
𝜕𝑀

, 

where the last expression is only the leading order. 

GENERAL EXPRESSION FOR 𝜷: 

By its definition, the function 𝛽(𝜆) can be given as 

𝛽(𝜆)    ≔    𝑀
𝛿𝜂

𝛿𝑀
   =    𝑀

𝜕𝜆

𝜕𝑀
   ≈    𝑀

𝜕

𝜕𝑀
(−𝛿𝜆 +

𝜆

2
∑𝛿𝑍
𝑖

), 

where the last expression is only the leading order. The sum 
∑  𝑖 covers the four external particles. For 𝜙4, they must be equal 

(where in QED it could be photons or electrons); thus, we can 

simply set ∑ = 4.𝑖   
 

 
 
 
 



17.6 Callan-Symanzik Equation for QED 
THE CALLAN-SYMANZIK EQUATION FOR QED: 

For QED, we take a little bit different (alternative) approach, to 

derive the Callan-Symanzik equation. We use the 𝜇 as a 

renormalization scale. Thereby we find (>17.6.1) 

(𝜇
𝜕

𝜕𝜇
− 𝛽

𝜕

𝜕𝑔
+ 𝑛2𝛾2 + 𝑛3𝛾3 +𝑚𝛾𝑚

𝜕

𝜕𝑚
)𝐺(𝑛2,𝑛3) = 0 

for a Greens function with 𝑛2 fermions and 𝑛3 photons, where 

𝑔 = 𝑒,         𝛾2,3 ≔
1

2

𝜇

𝑍2,3

𝑑𝑍2,3
𝑑𝜇

,          𝛾𝑚 ≔
𝜇

𝑚

𝑑𝑚

𝑑𝜇
,          𝛽 ≔ −𝜇

𝑑𝑔

𝑑𝜇
. 

GENERAL EXPRESSIONS FOR 𝜷 and 𝜸: 

To orders smaller than 𝑔4, we find (>17.6.2): 

𝛾2,3(𝑔) =
𝜇

2

𝑑𝛿2,3
𝑑𝜇

,          𝛽(𝑔) = 𝑔
𝜖

2
+ 𝑔𝜇

𝑑

𝑑𝜇
(𝛿1 − 𝛿2 −

1

2
𝛿3). 

In QED, 𝛿1 = 𝛿2. 

RESULTS FOR 𝜷 and 𝜸: 

Using formulas for 𝛿𝑖, to orders smaller than 𝑔4 (>17.6.2) 

𝛾2 =
𝑔2

16𝜋2
,          𝛾3 =

𝑔2

12𝜋2
,          𝛽 =

𝜖

2
𝑔 −

𝑔3

12𝜋2
. 

 

17.7 General Solution of the Callan-Symanzik Equation 
EQUATION FOR THE 2-POINT FUNCTION: 

Since 𝐺(2)(𝑝2) is a function of 𝑝2 (and not 𝑝 as a vector), let’s use 

the variable 𝓅 ≔ √−𝑝2 ⟺𝓅2 = −𝑝2, where 𝓅 is a number, not 

a vector. This allows us to replace 𝑀 𝜕/𝜕𝑀 by −2 − 𝓅 𝜕/𝜕𝓅 in 

the Callan-Symanzik equation for the 2-point function (>17.7.1): 

(𝓅
𝜕

𝜕𝓅
− 𝛽(𝜆)

𝜕

𝜕𝜆
− 2𝛾(𝜆) + 2) 𝐺(2)(𝓅, 𝜆) = 0. 

GENERAL SOLUTION FOR THE 2-POINT FUNCTION: 

The general solution can be given as (>17.7.2) 

𝐺(2)(𝓅, 𝜆) =
𝑖

𝓅2
𝐺0(𝜆̅) exp (2∫ 𝑑ln(𝓅′ 𝑀⁄ )  𝛾(𝜆̅)

𝓅′=𝓅

𝓅′=𝑀

). 

Here, 𝐺0 is arbitrary (depending on “initial conditions”) and 𝜆̅ ≡

𝜆̅(𝓅, 𝜆) is fixed by the defining equation 
𝜕

𝜕 ln(𝓅 𝑀⁄ )
𝜆̅(𝓅, 𝜆) = 𝛽 (𝜆̅(𝓅, 𝜆)),          𝜆̅(𝓅 = 𝑀, 𝜆) = 𝜆. 

This is the renormalization group equation and 𝜆̅ is called the 

running coupling constant. From this last equation also follows 

∫ 𝑑ln(𝓅′ 𝑀⁄ )
𝓅′=𝓅

𝓅′=𝑀

= ∫ 𝑑𝜆′
1

𝛽(𝜆′)

𝜆(𝓅,𝜆)

𝜆

, 

(𝓅
𝜕

𝜕𝓅
− 𝛽(𝜆)

𝜕

𝜕𝜆
) 𝜆̅(𝓅, 𝜆) = 0.                

GENERAL SOLUTION FOR THE 4-POINT FUNCTION: 

By the same derivation we find four the 4-point function 

(𝓅
𝜕

𝜕𝓅
− 𝛽(𝜆)

𝜕

𝜕𝜆
− 4𝛾(𝜆) + 8) 𝐺(4)(𝓅, 𝜆) = 0, 

where 𝓅2 ≔ −𝑝𝑖
2 ∀𝑖. The solution will be 

𝐺(4)(𝓅, 𝜆) =
1

𝓅8
𝐺0(𝜆̅) exp (4∫ 𝑑ln(𝓅′ 𝑀⁄ )  𝛾(𝜆̅)

𝓅′=𝓅

𝓅′=𝑀

). 

INTERPRETATION: 

When we defined our theory at scale 𝑀 in 17.4, this meant that 

the full vertex coupling was defined to be 𝜆 at 𝑠 = 𝑡 = 𝑢 = −𝑀2. 

That is, we can use �̅� instead of 𝜆 and consistently get 𝜆̅(𝓅) = 𝜆 

at 𝓅 = 𝑀 as well as 

𝐺(2)(𝓅 = 𝑀) =
𝑖

𝓅2
𝐺0(𝜆) exp(0). 

We do know how 𝐺(2) looks at 𝓅 = 𝑀 and can in this way 

determine 𝐺0(𝜆).  

𝐺(2)(𝓅 = 𝑀) =
𝑖

−𝓅2
+ 𝒪(𝜆2)          ⟹           𝐺0(𝜆̅) = −1 + 𝒪(𝜆

2̅) 

Similarly, at 𝓅 = 𝑀 we have 𝐺(4)(𝓅) = (−𝑖𝜆)(𝑖 𝓅2⁄ )4 and thus 

𝐺0(𝜆̅) = −𝑖𝜆̅ + 𝒪(𝜆
2̅). 

 

17.8 The Running Coupling 
THE RUNNING COUPLING IN 𝝓𝟒 THEORY: 

Using 𝛽(𝜆) = 3𝜆2/(4𝜋)2 from 17.4, the defining differential 

equation for the running coupling constant from 17.7 reads 

𝜕

𝜕 ln(𝓅 𝑀⁄ )
𝜆̅ =

3𝜆2̅

(4𝜋)2
. 

This equation is solved by (>17.8.1) 

𝜆̅(𝓅, 𝜆) =
𝜆

1 − (3𝜆 (4𝜋)2⁄ ) ln(𝓅 𝑀⁄ )
. 

This equation is equal to the expansion for 𝜆′ in 17.3 (>17.8.2). 

The scale 𝑀 corresponds to the cutoff Λ, whereas 𝓅 corresponds 

to the scale of interest 𝑏Λ. 

THE RUNNING COUPLING IN QED: 

In QED, we find a very similar relation (>17.8.3): 

�̅�𝑟
2(𝓆, 𝑒𝑟) =

𝑒𝑟
2

1 − (𝑒𝑟
2 6𝜋2⁄ ) ln(𝓆 𝑀⁄ )

, 

where 𝑒𝑟 = 𝑒(𝑞
2 = 𝑀2). If we set 𝑀 to be of the order of the 

electron mass, 𝑀2 = 𝐴𝑚2, we can approximate 𝑒𝑟 by 𝑒 = √4𝜋𝛼. 

This transform the equation into 

�̅�(𝓆, 𝑒𝑟) =
𝛼

1 − (𝛼 3𝜋⁄ ) ln(−𝑞2 𝐴𝑚2⁄ )
. 

This is exactly the equation from (>13.6.1), if 𝐴 = exp 5/3. Of 

course, the exact value of 𝐴 can only be determined by the 

detailed one-loop calculation from back then. 



18 Non-Abelian Gauge Theories 
 

18.1 Feynman Rules 
THE YANG-MILLS LAGRANGIAN: 

Recall the Yang-Mills Lagrangian from 3.7 (>18.1.1) 

ℒ = −
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎

𝜇𝜈
+ Ψ̅(𝑖𝐷 − 𝑚)Ψ. 

PROPAGATORS: 

With Ψ ≔ (𝜓1, … , 𝜓𝑁)
𝑇 , the fermion propagator reads (>18.1.2) 

�̃�𝐹,𝑖𝑗(𝑥 − 𝑦) = ⟨Ω|𝒯 𝜓𝑖(𝑥) �̅�𝑗(𝑦)|Ω⟩ = ∫𝑑
4�̅�

𝑖𝛿𝑖𝑗

𝑝 − 𝑚
 𝑒−𝑖𝑘⋅(𝑥−𝑦). 

Combining the result above with the known photon propagator 

from section 6.8, we can guess that the propagator of the vector 

fields reads (rigorous derivation in 18.2) 

�̂�𝐹,𝑎𝑏
𝜇𝜈 (𝑥 − 𝑦) = ⟨Ω|𝒯𝐴𝑎

𝜇(𝑥)𝐴𝑏
𝜈(𝑦)|Ω⟩ = ∫𝑑4�̅�

−𝑖𝜂𝜇𝜈𝛿𝑎𝑏
𝑝2

𝑒−𝑖𝑘⋅(𝑥−𝑦). 

For an arbitrary gauge, we will derive this propagator in (>18.2). 

Along the way, we will also discover the ghosts. 

VERTICES: 

Expanding the interaction terms of ℒ, we find (>18.1.3) 

ℒ = ℒ0 − 𝑔Ψ̅𝐴𝜇
𝑎𝛾𝜇Ψ𝑡𝑎 + 𝑔𝑓

𝑎𝑏𝑐(𝜕𝜇𝐴𝜈
𝑎) 𝐴𝑏

𝜇
𝐴𝑐
𝜈  

                     −
1

4
𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒𝐴𝜇

𝑏𝐴𝜈
𝑐𝐴𝑑

𝜇
𝐴𝑒
𝜈 . 

In 15.6, a term 𝑒�̅�𝐴𝜓 lead to a vertex factor 𝑖𝑒𝛾𝜇 . Thus, the 

vertex factor of the fermion gauge boson interaction is 

−𝑖𝑔𝛾𝜇𝑡𝑎. 

Defining all momenta inwards, the vertex factor of the three 

gauge boson interaction reads (>18.1.4) 

𝑔𝐶𝑎𝑏𝑐(𝜂𝜇𝜈(𝑝2 − 𝑝1)
𝜌 + 𝜂𝜇𝜌(𝑝1 − 𝑝3)

𝜈 + 𝜂𝜈𝜌(𝑝3 − 𝑝2)
𝜇). 

Finally, the four gauge boson interaction reads (>18.1.5) 

−𝑖𝑔2(𝑓𝑓
𝑎𝑏𝑒𝑓𝑒𝑐𝑑(𝜂𝜇𝜌𝜂𝜈𝜎 − 𝜂𝜇𝜎𝜂𝜈𝜌) 

       + 𝑓𝑎𝑐𝑒𝑓𝑒𝑏𝑑(𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜎𝜂𝜈𝜌) 

         + 𝑓𝑎𝑑𝑒𝑓𝑒𝑏𝑐(𝜂𝜇𝜈𝜂𝜌𝜎 − 𝜂𝜇𝜌𝜂𝜈𝜎)). 

 
 

18.2 The Faddeev-Popov Lagrangian: Ghosts 
THE GAUGE BOSON PROPAGATOR: 

Using the Faddeev-Popov procedure, that we already 

encountered in 15.3, we find the propagator for the gauge 

bosons in Fourier space (>18.2.1) 

�̂�𝐹,𝑎𝑏
𝜇𝜈

=
−𝑖𝛿𝑎𝑏
𝑘2 + 𝑖𝜖

(𝜂𝜇𝜈 − (1 − 𝜉)
𝑘𝜇𝑘𝜈

𝑘2
). 

Thus, our guess from 18.1 was indeed correct for the Feynman-

‘t-Hooft gauge 𝜉 = 1. 

FADDEEV-POPOV GHOSTS: 

The Faddeev-Popov gave us the same propagator as for photons. 

However, in contrast to photons, now this procedure yields 

another contribution: So-called ghosts; ghosts are described by 

Graßmann fields �̅�, 𝜗 and have the propagator (>18.2.2) 
𝑖𝛿𝑎𝑏
𝑘2

 

and the vertex  

−𝑔𝑓𝑎𝑏𝑐𝑝𝜈 . 

THE FADDEEV-POPOV LAGRANGIAN: 

The Faddeev-Popov procedure created two additional terms for 

the Lagrangian. Their effects where derived in (>18.2.1) and 

(>18.2.2). Including those terms, the total Lagrangian now reads 

ℒ = −
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎

𝜇𝜈
−
1

2𝜉
(𝜕𝜇𝐴𝜇

𝑎)
2
+ Ψ̅(𝑖𝐷 − 𝑚)Ψ + �̅�(−𝜕𝜇𝐷𝜇)𝜗. 

Here, the 𝑡𝑎 inside 𝐷𝜇  needs to be chosen in the adjoint 

representation (>18.2.1): 

−�̅�(𝜕𝜇𝐷𝜇)𝜗 = −�̅�
𝑎(𝛿𝑎𝑏𝜕𝜇 − 𝑔𝐴𝜇

𝑐𝑓𝑎𝑐𝑏)𝜗𝑏 . 
 

18.3 Ghosts Fix the Optical Theorem 
POLARIZATIONS OF FINAL STATES: 

Consider the diagrams 

 
According to Cutkosky rules from 11.4, the imaginary part of 

these diagrams is equal to the cut diagrams (integrated over 

loop momenta). No polarization of the gauge bosons is excluded 

for the propagators of the left-hand diagram. Thus, after cutting, 

also unphysical polarizations end up in final state diagrams. We 

are going to need the right-hand diagram to cancel those. 

CUTTING THE DIAGRAM: 

Cutkosky rules tell us, that (>18.3.1) 

2 Imℳ =
1

2
∫𝑑𝜙 (𝑖ℳ̃𝜇𝜈

𝑎𝑏)(𝜂𝜇𝜌𝜂𝜈𝜎)(𝛿𝑎𝑐𝛿𝑏𝑑)(𝑖ℳ̂𝜌𝜎
𝑐𝑑), 

where ℳ̃𝑎𝑏  is the left-hand half of the cut diagram and ℳ̂𝑐𝑑  the 

right-hand half. The amplitudes ℳ̃𝑎𝑏  and ℳ̂𝑎𝑏 are computed in 

(>18.3.2). 

CHOICE OF POLARIZATIONS: 

For the present purpose, it is most convenient to choose the 

polarization vector in a specific way (>18.3.3), such that they 

obey 𝜂𝜇𝜈 = 𝜀−𝑘
𝜇
𝜀+𝑘
𝜈 + 𝜀+𝑘

𝜇
𝜀−𝑘
𝜈 − 𝜀𝜆𝑘

𝜇
𝜀𝜆𝑘
𝜈 , where 𝜆 = 1, 2 are the 

physical and ± the unphysical polarizations.  

PLUGGING IN THE EXPANSION IN POLARIZATIONS: 

We can now substitute the expansion for 𝜂𝜇𝜈  in polarization 

vectors into the expression for 2 Imℳ above. There are two 𝜂’s, 

each expanded in three terms yields sixteen terms (>18.3.4). The 

pieces that involve only physical polarizations satisfy the optical 

theorem. We do not need to consider them further. A lot of the 

other terms cancel right away (>18.3.5). Two terms do not 

cancel by themselves. They turn out to be equal and can together 

be given as (>18.3.6) 
1

2
(𝑖ℳ̃𝜇𝜈

𝑎𝑏) 𝜂𝜇𝜌𝜂𝜈𝜎𝛿𝑎𝑐𝛿𝑏𝑑 (𝑖ℳ̂𝜌𝜎
𝑐𝑑)

= (
𝑔2

𝑘2
𝑓𝑎𝑏𝑐�̅�𝑝1(𝑘1𝑡

𝑐)𝑢𝑝2)(
𝑔2

𝑘2
𝑓𝑎𝑏𝑑�̅�𝑝2′ (−𝑘2𝑡

𝑑)𝑣𝑝1′) + ⋯, 

where “+⋯” stands for terms with physical polarizations only. 

USING THE GHOST DIAGRAM TO CANCEL THOSE TERMS: 

It is now easy to show that the ghost diagram cancels those 

terms exactly, such that (>18.3.7) 

2 Imℳtot = ∫𝑑𝜙 (only physical polarization terms). 

CANCELLATION OF UNPHYSICAL POLARIZATIONS IN QED: 

By the way, in QED we have 𝑓𝑎𝑏𝑐 = 0, such that there are no 

terms from unphysical polarizations. It can also be shown 

explicitly, that the Ward identity makes unphysical polarizations 

cancel (>18.3.8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.4 The Gauge Boson Self-Energy 
OVERVIEW: 

To order 𝑔2, four diagrams contribute to the gauge boson self-

energy 1PI (additional “tadpole” diagrams vanish by (>15.2.1)): 

 
We will call them, in the same order, 

Π𝑎𝑏
𝜇𝜈
= Π𝑎𝑏

′𝜇𝜈
+ Π̃𝑎𝑏

𝜇𝜈
+ Π̂𝑎𝑏

𝜇𝜈
+ Π̆𝑎𝑏

𝜇𝜈
. 

FERMION LOOP DIAGRAM: 

We denoted this diagram as 𝑖Π𝜇𝜈(𝑞) = 𝑖(𝑞2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈)Π(𝑞2) in 

13.4; the only difference in the non-Abelian theory is that the 

vertices receive additional factors 𝑡𝑎. We can therefore simply 

recycle the results from back then. In the end, we will mainly 

need the divergent part of this diagram, to find the counter 

terms that suffice to cancel it. For 𝑛𝑓 fermion species and to 

leading order, this diagram reads (>18.4.1) 

𝑖Π𝑎𝑏
′𝜇𝜈
= 𝑖(𝑞2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈) 𝑇𝛿𝑎𝑏 (

−𝑔2

(4𝜋)2
⋅
8𝑛𝑓

3𝜖
+ finite). 

STRUCTURE OF THE LAST THREE DIAGRAMS: 

For the derivation of the other three diagrams see 

Peskin&Schröder chapter 16.5. We will only give the results. The 

last three diagrams are all of the same structure: 

(

Π̃𝑎𝑏
𝜇𝜈

Π̂𝑎𝑏
𝜇𝜈

Π̆𝑎𝑏
𝜇𝜈

) =
𝑖𝜇4−𝑑𝑔2

(4𝜋)𝑑 2⁄
𝐶𝐴𝛿𝑎𝑏∫ 𝑑𝑥

1

Δ2−𝑑 2⁄

1

0

⋅ (
�̃�𝜇𝜈

�̂�𝜇𝜈

�̆�𝜇𝜈
). 

Here, Δ = −𝑥(1 − 𝑥)𝑞2. 𝐶𝐴 is the Casimir invariant of the adjint 

representation. Below, the results for the 𝜋’s are given. 

TWO-VERTEX GAUGE BOSON LOOP DIAGRAM: 

In the case of the second diagram, one finds 

�̃�𝜇𝜈 =  Γ(1 − 𝑑 2⁄ ) 𝜂𝜇𝜈𝑞2 �̃� + Γ(2 − 𝑑 2⁄ ) 𝜂𝜇𝜈𝑞2 ℬ̃ 

+ Γ(2 − 𝑑 2⁄ ) 𝑞𝜇𝑞𝜈  �̃�,                              

where 

�̃� ≔
3

2
(𝑑 − 1)𝑥(1 − 𝑥),          ℬ̃ ≔

1

2
(2 − 𝑥)2 +

1

2
(1 + 𝑥)2, 

�̃� ≔ − (1 −
𝑑

2
) (1 − 2𝑥)2 − (1 + 𝑥)(2 − 𝑥).                                

SINGLE-VERTEX GAUGE BOSON LOOP DIAGRAM: 

One can relatively easily show that this diagram vanishes in 𝑑 =

4 dimensions (>18.4.2). In general, however, one finds 

�̂�𝜇𝜈 = Γ(1 − 𝑑 2⁄ ) 𝜂𝜇𝜈𝑞2 �̂� + Γ(2 − 𝑑 2⁄ ) 𝜂𝜇𝜈𝑞2 ℬ̂, 

where 

�̂� = −
1

2
𝑑(𝑑 − 1)𝑥(1 − 𝑥),         ℬ̂ = −(𝑑 − 1)(1 − 𝑥)2. 

GHOST LOOP DIAGRAM: 

Finally, the ghost loop diagram contributes 

�̆�𝜇𝜈 = Γ(1 − 𝑑 2⁄ ) 𝜂𝜇𝜈𝑞2 �̆� + Γ(2 − 𝑑 2⁄ ) 𝑞𝜇𝑞𝜈 �̆�, 

where 

�̆� = −
1

2
𝑥(1 − 𝑥),          �̆� = 𝑥(1 − 𝑥). 

SUM OF THE LAST THEE DIAGRAMS: 

When we sum up the last three diagram, we get the integral 

above over the sum of the 𝜋’s with (>18.4.3) 

�̃�𝜇𝜈 + �̂�𝜇𝜈 + �̆�𝜇𝜈 = Γ(2 − 𝑑 2⁄ ) (𝜂𝜇𝜈𝑞2 − 𝑞𝜇𝑞𝜈) ℬ′, 

where ℬ′ = (1 − 𝑑 2⁄ )(1 − 2𝑥)2 + 2. Note, that the gauge boson 

1PI therefore has the structure ∼ 𝜂𝜇𝜈𝑞2 − 𝑞𝜇𝑞𝜈, exactly as the 

photon 1PI. Thus, the Ward identity is valid also in this case 

(>13.1.1). 

The divergent part of those three diagrams reads (>18.4.4) 

Π̃𝑎𝑏
𝜇𝜈
+ Π̂𝑎𝑏

𝜇𝜈
+ Π̆𝑎𝑏

𝜇𝜈

=  𝑖(𝑞2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈) 𝐶𝐴𝛿𝑎𝑏 (
−𝑔2

(4𝜋)2
(−
5

3
)
2

𝜖
+ finite). 

 
 
 

18.5 The Electron Self-Energy 
To order 𝑔2, only one diagram contributes to the electron self-

energy 1PI: 

 
Here, we are only interested into the divergent part, which reads 

−𝑖Σ𝑝 =
𝑖𝑔2

(4𝜋)2
1

𝜖
𝐶2(2𝑝 − 8𝑚) + finite 

(see Peskin&Schrödiger, chapter 16.5). 
 

18.6 The Vertex Correction 
To order 𝑔3, two diagrams contributes to the vertex correction: 

 
The divergent part of the first diagram reads 

𝑖𝑔3

(4𝜋)2
(𝐶2 −

1

2
𝐶𝐴) 𝑡

𝑎𝛾𝜇  
2

𝜖
+ finite. 

Note, that here the combination 𝑡𝑏𝑡𝑎𝑡𝑏 = (𝐶2 − 𝐶𝐴/2)𝑡
𝑎 

appears, that we already evaluated in (>2.2.3). 

The second diagram yields 

𝑖𝑔3

(4𝜋)2
⋅
3

2
𝐶𝐴𝑡

𝑎𝛾𝜇  
2

𝜖
+ finite 

(see Peskin&Schrödiger, chapter 16.5). 
 

18.7 Counter Terms 
DEFINITION OF THE COUNTER TERMS: 

We regularize the fields as usual: 

Ψ = √𝑍2Ψ𝑟 ,          𝐴𝜇
𝑎 = √𝑍3𝐴𝑟𝜇

𝑎 ,          𝜗 = √𝑍4𝜗𝑟 , 

where 𝜗 is a ghost field. Then, we define 
𝛿2,3,4 = 𝑍2,3,4 − 1,          𝛿𝑚 = 𝑍2𝑚0 −𝑚,       

𝛿1 =
𝑔0
𝑔
𝑍2𝑍3

1 2⁄ − 1,      𝛿1
3𝑔
=
𝑔0
𝑔
𝑍3
3 2⁄ − 1,    

𝛿1
4𝑔
=
𝑔0
2

𝑔2
𝑍3
2 − 1,           𝛿1

𝜗 =
𝑔0
𝑔
𝑍4𝑍3

1 2⁄ − 1.

 

Note, that these eight 𝛿’s depend on only five underlying 

constants. In particular, when we compute 𝛿1,2,3,4,𝑚 from loop 

diagrams, this information is sufficient to determine these five 

constants and thereby determine 𝛿1
4𝑔
, 𝛿1
3𝑔
, 𝛿1
𝜗. This is the reason, 

why we do not need to compute vertex corrections for the those 

three vertices explicitly to find 𝛿1
4𝑔
, 𝛿1
3𝑔
, 𝛿1
𝜗. 

THE COUNTER LAGRANGIAN: 

With these ingredients, the counter Lagrangian reads (>18.7.1): 

ℒct = Ψ̅𝑟(𝑖𝛿2𝜕 − 𝛿𝑚)Ψ𝑟 − 
1

4
𝛿3(𝜕𝜇𝐴𝑟𝜈

𝑎 − 𝜕𝜈𝐴𝑟𝜇
𝑎 )

2
                  

− 𝑔𝛿1Ψ̅r𝐴𝑟𝜇
𝑎 𝑡𝑎Ψr + 𝛿1

3𝑔
𝑔𝑓𝑎𝑏𝑐  (𝜕𝜇𝐴𝑟𝜈

𝑎 ) 𝐴𝑟𝑏
𝜇
𝐴𝑟𝑐
𝜈            

− 𝛿4�̅�𝑟
𝑎☐𝜗𝑟

𝑎           −
1

4
𝛿1
4𝑔
𝑔2𝑓𝑎𝑏𝑐𝑓𝑎𝑑𝑒  𝐴𝑟𝜇

𝑏 𝐴𝑟𝜈
𝑐 𝐴𝑟𝑑

𝜇
𝐴𝑟𝑒
𝜈

− 
1

2𝜉
𝛿3(𝜕

𝜇𝐴𝑟𝜇
𝑎 )

2
 + 𝑔𝛿1

𝜗�̅�𝑟
𝑎𝜕𝜇𝐴𝑟𝜇

𝑐 𝑓𝑎𝑐𝑏𝜗𝑟
𝑏.                     

 

VALUE OF THE RENORMALIZATION PARAMETERS: 

To cancel the divergencies from 18.4, 18.5 and 18.6 we need 

counter term Feynman rules  

                  = 𝑖(𝛿2𝑝 − 𝛿𝑚)                           = −𝑖𝛿3(𝑞
2𝜂𝜇𝜈 − 𝑞𝜇𝑞𝜈), 

         = 𝑖𝑔𝑡𝑎𝛾𝜇𝛿1. 

To one-loop order, we need (for a general gauge 𝜉)(>18.7.2) 

      𝛿1 =
1

𝜖

𝑔2

(4𝜋)2
(−2𝐶2 − 2𝐶𝐴 + 2(1 − 𝜉)𝐶2 +

1

2
(1 − 𝜉)𝐶𝐴), 

      𝛿2 =
1

𝜖

𝑔2

(4𝜋)2
(−2𝐶2 + 2(1 − 𝜉)𝐶2), 

      𝛿3 =
1

𝜖

𝑔2

(4𝜋)2
(
10

3
𝐶𝐴 −

8𝑛𝑓

3
𝑇 + (1 − 𝜉)𝐶𝐴), 

      𝛿𝑚 =
1

𝜖

𝑔2

(4𝜋)2
(−8𝐶2𝑚). 

 



18.8 Asymptotic Freedom 
THE 𝛃 FUNCTION: 

Using the formula for the 𝛽 function from 17.6 (which is still 

valid in non-Abelian theories) and the explicit formulas for the 

𝛿’s from 18.7, we find (for 𝜖 → 0) (>18.8.1) 

𝛽(𝑔) =
𝑔3

(4𝜋)2
(
11

3
𝐶𝐴 −

4𝑛𝑓

3
𝑇). 

Note, that in the SU(𝑁) case with 𝐶𝐴 = 𝑁 and 𝑇(fund) = 1/2, we 

have 𝛽 ∼ (11𝑁/3 − 2𝑛𝑓 3⁄ ), which is negative for 𝑛𝑓 < 18. 

THE RUNNING COUPLING: 

From the 𝛽 function above, we can derive (>18.8.2) 

�̅�(𝓅, 𝜇) =
𝑔2

1 +
𝑔2

(4𝜋)2
(
11
3
𝐶𝐴 −

4𝑛𝑓
3
𝑇) ln𝓅2/𝜇2

. 



19 The Higgs Mechanism 
 

19.1 The Linear Sigma Model 
THE LAGRANGIAN: 

Consider the Lagrangian for 𝜙4 theory from 8.1 for 𝑁 scalar 

fields 𝜙𝑖  and with the replacements 𝑚2 → −𝜇2 and 𝜆 4!⁄ → 𝜆 4⁄ : 

ℒ =
1

2
(𝜕𝜇�⃗⃗�)

2
+
𝜇2

2
�⃗⃗�2 −

𝜆

4
�⃗⃗�4

⏟          

=−𝑉(�⃗⃗⃗⃗�)

,          �⃗⃗� = (𝜙1, … , 𝜙𝑁) 

This Lagrangian is symmetric under the transformation 

𝜙𝑖 → 𝑅𝑖𝑗𝜙𝑗,          𝑅 ∈ O(𝑁), 

where O(𝑁) is the 𝑁 dimensional orthogonal group, consisting of 

the orthogonal 𝑁 × 𝑁 matrices. 

MINIMUM OF THE POTENTIAL: 

The potential 𝑉 has a maximum at �⃗⃗� = 0 at a minimum at 

sphere with radius 𝜇/√𝜆 in �⃗⃗�-space (>19.1.1). We choose 

�⃗⃗�0 ≔ (0, 0, … , 0, 𝑣),          𝑣 ≔ 𝜇/√𝜆 

as a representative of this minimal sphere.  

𝝅 AND 𝝈 FIELDS: 

If we write the general �⃗⃗� as a deviation with respect to �⃗⃗�0, 

�⃗⃗�(𝑥) = �⃗⃗�0 + (�⃗� (𝑥), 𝜎(𝑥)) = (�⃗� (𝑥), 𝑣 + 𝜎(𝑥)), 

where �⃗� (𝑥) is an 𝑁 − 1 dimensional vector. The field 𝜎(𝑥) 

describes oscillations in radial directions, whereas the fields 

𝜋𝑖(𝑥) deviations tangential to the sphere. If we plug this form of 

�⃗⃗� into the Lagrangian, it reads (>19.1.2) 

          ℒ =
1

2
(𝜕𝜇�⃗� )2 +

1

2
(𝜕𝜇𝜎)2 −

2𝜇2

2
 𝜎2 

                     −𝜇√𝜆 𝜎3 − 𝜇√𝜆 �⃗� 2𝜎 −
𝜆

4
�⃗� 4 −

𝜆

2
�⃗� 2𝜎2 −

𝜆

4
𝜎4. 

We obtain a field 𝜎 with mass √2𝜇 and 𝑁 − 1 massless fields 𝜋𝑖 . 

The original O(𝑁) symmetry is hidden (“broken”), only the 

O(𝑁 − 1) symmetry of the fields 𝜋𝑖  is apparent, reflecting the 

unbroken symmetry of the surface of the sphere.  
 

19.2 Goldstone’s Theorem 
NUMBER OF BROKEN SYMMETRIES (O(𝑵)): 

A rotation in 𝑁 dimensions 𝑅 ∈ O(𝑁) can be in any of 

𝑁(𝑁 − 1)/2 planes. Thus, a rotation 𝑅 ∈ O(𝑁 − 1) can be on any 

of (𝑁 − 1)(𝑁 − 2)/2 planes. This number of planes is the 

number of symmetries/generators (not equal to 𝑁). The number 

of broken symmetries is therefore 
𝑁(𝑁 − 1)

2
−
(𝑁 − 1)(𝑁 − 2)

2
= 𝑁 − 1. 

Thus, for 𝑁 = 2, there is 1 symmetry, 1 of which is broken, 

leaving 0 continuous symmetries over. On the other hand, for 

𝑁 = 3, there is one symmetry over: The rotation about the 

vector �⃗⃗�0 = (0, 0, 𝑣) that we choose to break the symmetry (the 

rotation about the 𝑧 axis, in this case). 

NUMBER OF BROKEN SYMMETRIES (SU(𝑵)): 

Similarly, if 𝜙 is complex and ℒ invariant under SU(𝑁), the 

number of symmetries/generators are 𝑁2 − 1 and the number 

of broken symmetries is 

(𝑁2 − 1) − ((𝑁 − 1)2 − 1) = 2𝑁 − 1. 

Man beachte, dass die U(𝑁) genau 𝑁2 Generatoren hat. 

GOLDSTONE’S THEOREM: 

Goldstone’s theorem states that for each spontaneously broken 

continuous symmetry, the theory must contain a massless 

particle. Those particles are called Goldstone bosons. 

In our linear sigma model from 19.1, we found 𝑁 − 1 Goldstone 

bosons 𝜋𝑖 , thus it fulfilled the Goldstone theorem.  

PROOF OF GOLDSTONE’S THEOREM: 

A proof of Goldstone’s theorem is given in (>19.2.1).  

 

19.3 The Higgs Mechanism  
LAGRANGIAN AND SYMMETRY TRANSFORMATION: 

Consider the Lagrangian 

ℒ = −
1

4
(𝐹𝜇𝜈

𝑎 )
2
+ |𝐷𝜇𝜙|

2
− 𝑉(𝜙),          𝜙 = (𝜙1, … , 𝜙𝑛) 

with 𝑉 such that ℒ is invariant under the transformation 

𝜙(𝑥) → (1 + 𝑖𝛼𝑎(𝑥)𝑡𝑎) 𝜙(𝑥) 

form some 𝛼𝑎(𝑥). If we take 2𝑛 real scalar fields 𝜙𝑖 , this implies 

that we can replace 𝑡𝑎 → 𝑖𝑇𝑎 with 𝑇𝑖𝑗
𝑎 = −𝑇𝑗𝑖

𝑎 ∈ ℝ (>19.3.1). 

EXPANDING ABOUT THE VACUUM EXPECTATION VALUE: 

The minimum of the potential 𝜙0 can be interpreted as the 

vacuum expectation value 𝜙0 = ⟨Ω|𝜙0|Ω⟩. Expanding the kinetic 

term of the scalar fields around this minimum (that is, plugging 

in 𝜙(𝑥) = 𝜙0 + 𝜙
′(𝑥)), we find (>19.3.2) 

1

2
(𝐷𝜇𝜙)

2
=
1

2
(𝜕𝜇𝜙

′)
2
− 𝑔𝐴𝑎

𝜇
(𝜕𝜇𝜙𝑖

′)(𝑇𝑖𝑗
𝑎𝜙0𝑗) +

𝑚𝑎𝑏
2

2
𝐴𝜇
𝑎𝐴𝑏

𝜇
+ 𝒪(3), 

where 𝒪(3) stands for terms of order three in the fields. Here, 

we used the abbreviation 

𝑚𝑎𝑏
2 ≔ 𝑔2𝐹𝑖

𝑎𝐹𝑖
𝑏 ,          𝐹𝑎 ≔ 𝑇𝑎𝜙0. 

GAUGE BOSON GOLDSTONE BOSON VERTEX: 

The second term of the kinetic term above gives rise to a vertex 

between a single gauge boson and a single Goldstone boson. 

Note, that 𝜙′ contains not only Goldstone boson components �⃗� , 

but also massfull components 𝜎. However, only the massless 

Goldstone bosons survive the scalar product 𝜙′ ⋅ (𝑇𝑎𝜙0) 

(>19.3.3). One can derive its vertex factors as (>19.3.4) 

−𝑔𝑘𝜇𝐹𝑎. 

1PI OF THE GAUGE BOSON: 

Considering only the contribution of the kinetic term of the 

scalar fields (𝐷𝜇𝜙)
2
/2, the 1PI is given by (>19.3.5) 

 
which yields in mathematics 

1PI = 𝑖𝑚𝑎𝑏
2 (𝜂𝜇𝜈 −

𝑘𝜇𝑘𝜈

𝑘2
). 

Thus, the explicit mass term 𝑚𝑎𝑏
2 𝐴𝜇

𝑎𝐴𝑏
𝜇

 in the expansion of 

(𝐷𝜇𝜙)
2

 together with the 𝜙′-𝐴𝑎
𝜇

 interaction term yield the 

correct transverse propagator structure of a gauge boson that 

obey the ward identity 𝑘𝜇(1PI)
𝜇𝜈 = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19.4 GWS Theory of Weak Interactions 
SU(2) INVARIANCE YIELDS THREE MASSIVE BOSONS: 

Consider a SU(2) transformation. It comes with 22 − 1 = 3 

gauge fields 𝐴𝜇
𝑎 in the covariant derivative 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝜇

𝑎𝑡𝑎. We 

choose the fundamental representation. When we plug 𝜙 =

𝜙0 + 𝜙
′ with 𝜙0 = (0, 𝑣)/√2 into |𝐷𝜇𝜙|

2, we find (>19.4.1) 

|𝐷𝜇𝜙|
2
=
𝑚𝐴
2

2
𝐴𝜇
𝑎𝐴𝑎

𝜇
+⋯,          𝑚𝐴 =

𝑔𝑣

2
, 

that is, the three gauge boson all have the mass 𝑚𝐴. 

INCLUDING THE MASSLESS PHOTON: 

To include the massless photon, we demand a SU(2) × U(1) 

symmetry, that is a transformation 𝜙 → 𝑒𝑖𝛼
𝑎𝑡𝑎𝑒𝑖𝛽/2𝜙. We now 

need a covariant derivative 

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝜇
𝑎𝑡𝑎 + 𝑖𝑔′𝐵𝜇 2.⁄  

By explicit computation (>19.4.2) or by adopting the general 

results from 19.3 (>19.4.3), we find the mass term 

|𝐷𝜇𝜙|
2
=
𝑚𝑎𝑏
2

2
𝐴𝜇
𝑎𝐴𝑏

𝜇
+⋯, 

where 𝐴𝜇
4 = 𝐵𝜇  and (no sum over 𝑎, 𝑔1,2,3 = 𝑔, 𝑔4 = 𝑔′) 

𝑔𝑎𝐹𝑖
𝑎 =

𝑣

2
(

𝑔 0 0 0
0 𝑔 0 0
0 0 𝑔 0

0 0 −𝑔′ 0

)

𝑎𝑖

                                             

⟹          𝑚𝑎𝑏
2 =

𝑣2

4

(

 
 

𝑔2 0 0 0

0 𝑔2 0 0

0 0 𝑔2 −𝑔𝑔′

0 0 −𝑔𝑔′ 𝑔′2 )

 
 

𝑎𝑏

. 

THE 𝐴𝜇 AND 𝑍𝜇
0 FIELD: 

Diagonalizing the lower right quarter of the matrix 𝑚𝑎𝑏
2  and 

thereby find its mass eigenstates, we find (>19.4.4) 

𝑣2

8
(−𝑔𝐴𝜇

3 + 𝑔′𝐵𝜇)
2
=
𝑣2

8
(
𝐴𝜇

𝑍𝜇
0)

𝑇

(
0 0
0 𝑔2 + 𝑔′2

) (𝐴𝜇 , 𝑍𝜇
0), 

where 

(
𝑍𝜇
0

𝐴𝜇
) ≔ (

cos 𝜃𝑤 −sin 𝜃𝑤
sin 𝜃𝑤 cos 𝜃𝑤

) (
𝐴𝜇
3

𝐵𝜇
),        (

cos 𝜃𝑤
sin 𝜃𝑤

) ≔ −
(𝑔, 𝑔′)𝑇

√𝑔2 + 𝑔′2
. 

THE 𝑊𝜇
± FIELDS: 

We also define (>19.4.5) 

𝑊𝜇
± ≔

𝐴𝜇
1 ∓ 𝑖𝐴𝜇

2

√2
 

to the get right mass term of complex scalar fields (see 4.7): 

𝑣2𝑔2

8
((𝐴𝜇

1)
2
+ (𝐴𝜇

2)
2
) =

𝑔2𝑣2

4
𝑊𝜇
−𝑊+𝜇. 

OVERVIEW OVER THE MASSES: 

Thus, the particles we found have the following masses: 

𝑚𝐴 = 0,          𝑚𝑍 =
𝑣

2
√𝑔2 + 𝑔′2,          𝑚𝑊 =

𝑔𝑣

2
. 

Note, that according to these formulas, 𝑚𝑍 ≥ 𝑚𝑊± .  

With these masses, we can write 

|𝐷𝜇𝜙|
2
= 𝑚𝑊

2 𝑊𝜇
−𝑊+𝜇 +

𝑚𝑍
2

2
(𝑍𝜇

0)
2
+⋯. 

COVARIANT DERIVATIVE IN TERMS OF THE NEW FIELDS: 

In terms of the new fields 𝑊𝜇
±, 𝑍𝜇

0 and 𝐴𝜇, we can give the 

covariant derivative from above as (>19.4.6) 

𝐷𝜇 = 𝜕𝜇 +
𝑖𝑔

√2
(𝑊𝜇

+𝑡+ +𝑊𝜇
−𝑡−)                   

−
𝑖𝑔

cos 𝜃𝑤
(𝑡3 − sin2 𝜃𝑤 𝑄)𝑍𝜇

0 − 𝑖𝑒𝑄𝐴𝜇 , 

where we used 𝑌 instead of the factor 1/2 in the 𝐵𝜇-term and 

𝑄 = 𝑡3 + 𝑌,          𝑒 = −𝑔 sin 𝜃𝑤 > 0,          𝑡
± ≔ 𝑡1 ± 𝑖𝑡2. 

𝑄 is identified with the charge number (electron: 𝑄 = −1). Note, 

that 

𝑡+ = (
0 1
0 0

),          𝑡− = (
0 0
1 0

). 
 

19.5 Coupling to Fermions 
GENERAL CONSIDERATIONS: 

It is an experimental fact, that 𝑊𝜇
± bosons only couple to left-

handed fermions. That is, we need to treat left- and right-handed 

fermions separately: 

�̅�𝑖𝐷𝜓 → �̅�𝐿𝑖𝐷𝜓𝐿 + �̅�𝑅𝑖𝐷𝜓𝑅 . 

The values of 𝑌 and thus 𝑄 inside 𝐷𝜇  generally depends on the 

particle type (electron, neutrino, up-quark, …) described by 𝜓; 

they may also differ in the left-hand and the right-hand term.  

LEFT-HANDED ELECTRON-NEUTRINO DOUBLET: 

We can describe left-handed electrons together with neutrinos 

as a doublet 

𝜓 → 𝐸𝐿 ≔ (
𝜈𝐿
𝑒𝐿
) 

in the space of the representation of the symmetry group. For 

such a spinor, we want to choose 𝑌 = −1/2, to find the right 

charge numbers 𝑄 = 𝑡3 + 𝑌 for the neutrino and the electron. 

We find (>19.5.1) 

�̅�𝐿𝑖𝐷𝐸𝐿 = �̅�𝐿𝑖𝜕𝐸𝐿 + 𝑔(𝑊𝜇
+𝐽𝑊
+𝜇
+𝑊𝜇

−𝐽𝑊
−𝜇
+ 𝑍𝜇

0𝐽𝑍
𝜇
) + 𝑒𝐴𝜇𝐽𝐸𝑀

𝜇
, 

where 

𝐽𝑊
+𝜇
= −

1

√2
�̅�𝐿𝛾

𝜇𝑒𝐿 ,          𝐽𝑊
−𝜇
= −

1

√2
�̅�𝐿𝛾

𝜇𝜈𝐿 ,          𝐽𝐸𝑀
𝜇
= −�̅�𝐿𝛾

𝜇𝑒𝐿 , 

 𝐽𝑍
𝜇
=

1

cos 𝜃𝑤
(
1

2
�̅�𝐿𝛾

𝜇𝜈𝐿 + �̅�𝐿𝛾
𝜇 (sin2 𝜃𝑤 −

1

2
) 𝑒𝐿). 

RIGHT-HANDED ELECTRONS: 

For right-handed electrons we simply impose 𝑡𝑎 = 0 and 𝑄 =

𝑌 = −1 and find (>19.5.2) 

�̅�𝑅𝑖𝐷𝑒𝑅 = �̅�𝑅𝑖𝜕𝑒𝑅 + 𝑔𝑍𝜇
0𝐽𝑍
𝜇
+ 𝑒𝐴𝜇𝐽𝐸𝑀

𝜇
, 

where 

𝐽𝑍
𝜇
= �̅�𝑅𝛾

𝜇
sin2 𝜃𝑤
cos 𝜃𝑤

𝑒𝑅,          𝐽𝐸𝑀
𝜇
= −�̅�𝑅𝛾

𝜇𝑒𝑅. 

LEFT-HANDED QUARK DOUBLET: 

Very similarly to the electron-doublet, we can construct a quarks 

doublet consisting of an up- and down-quark, 

𝜓 → 𝑞𝐿 ≔ (
𝑢𝐿
𝑑𝐿
). 

Here, 𝑌 = 1/6 will give the right charges. Then we find (>19.5.3) 

�̅�𝐿𝑖𝐷𝑞𝐿 = �̅�𝐿𝑖𝜕𝑞𝐿 + 𝑔(𝑊𝜇
+𝐽𝜇
+ +𝑊𝜇

−𝐽𝑊
−𝜇
+ 𝑍𝜇

0𝐽𝑍
𝜇
) + 𝑒𝐴𝜇𝐽𝐸𝑀

𝜇
, 

where 

 𝐽𝑊
+𝜇
= −

1

√2
�̅�𝐿𝛾

𝜇𝑑𝐿 ,                               𝐽𝑊
−𝜇
= −

1

√2
�̅�𝐿𝛾

𝜇𝑢𝐿 , 

 𝐽𝐸𝑀
𝜇
=
2

3
�̅�𝐿𝛾

𝜇𝑢𝐿 −
1

3
�̅�𝐿𝛾

𝜇𝑑𝐿 , 

𝐽𝑍
𝜇
=

1

cos 𝜃𝑤
(�̅�𝐿𝛾

𝜇 (
1

2
−
2

3
sin2 𝜃𝑤) 𝑢𝐿 + �̅�𝐿𝛾

𝜇 (
1

3
sin2 𝜃𝑤 −

1

2
)𝑑𝐿). 

RIGHT-HANDED QUARKS: 

Just as for right-handed electrons, we use 𝑡𝑎 = 0 and 𝑄 = 𝑌 =

2/3 for the up-quark 𝑢𝑅 and find (>19.5.4) 

�̅�𝑅𝑖𝐷𝑢𝑅 = �̅�𝑅𝑖𝜕𝑢𝑅 + 𝑔𝑍𝜇
0𝐽𝑍
𝜇
+ 𝑒𝐴𝜇𝐽𝐸𝑀

𝜇
, 

where 

𝐽𝑍
𝜇
= −𝑌�̅�𝑅𝛾

𝜇
sin2 𝜃𝑤
cos 𝜃𝑤

𝑢𝑅 ,          𝐽𝐸𝑀
𝜇
= 𝑌�̅�𝑅𝛾

𝜇𝑢𝑅 

and similarly, with 𝑄 = 𝑌 = −1/3, for the down quark. 

 
 
 
 
 
 
 
 
 
 



19.6 Fermion Mass Terms 
THE PROBLEM: 

In 19.5, we investigated how fermions couple to gauge bosons. 

Note, that we did not address mass terms of fermions at all. In 

the GWS formalism, it is not so easy anymore, to write down 

mass terms, since we have to distinguish between left- and right-

handed particles. However, for example, −𝑚(�̅�𝐿𝑒𝑅 + �̅�𝑅𝑒𝐿) is no 

valid mass term, since �̅�𝐿 and 𝑒𝑅 belong to different SU(2) 

representations and have different U(1) charges. Such a term 

would violate gauge invariance (>19.6.1).  

ELECTRONS: 

When we assigned masses to the gauge bosons, we used a set of 

scalar fields 𝜙 = (𝜙1, 𝜙2). In the same way, we can write an 

electron mass term as (>19.6.1) 

−𝜆𝑒(ℰ�̅� ⋅ 𝜙)𝑒𝑅 + h.c., 

where ℰ𝐿 = (𝑒𝐿 , 𝜈𝐿) as in 19.5. 𝜆𝑒  is a new dimensionless 

coupling constant. If we expand 𝜙 = 𝜙0 + 𝜙
′ with 𝜙0 =

(0, 𝑣)/√2, this mass term becomes 

−
𝜆𝑒𝑣

√2
�̅�𝐿𝑒𝑅 + h.c. + 𝒪((fields)

3)          ⟹           𝑚 =
𝜆𝑒𝑣

√2
. 

Note, that we cannot built a fermion mass term without having 

the right-handed particle; hence the facts that the neutrinos are 

massless and that there are only left-handed neutrinos are 

connected. 

QUARKS: 

We can do the same for the down-quark, using 𝑞𝐿 = (𝑢𝐿 , 𝑑𝐿): 

−𝜆𝑑(�̅�𝐿 ⋅ 𝜙)𝑑𝑅 + h.c. =
𝜙=𝜙0+𝜙

′

−
𝜆𝑑𝑣

√2
𝑑̅𝐿𝑑𝑅 + h.c. + 𝒪(3). 

Thus, the mass is 𝑚𝑑 = 𝜆𝑑𝑣/√2. 

Since the up quarks sits at the upper position of the doublet 𝑞𝐿 , 

we need a little trick to bring the mass term into the right form 

(>19.6.2): 

−𝜆𝑢𝜖
𝑎𝑏�̅�𝐿

𝑎𝜙𝑏
†𝑢𝑅 + h.c. =

𝜙=𝜙0+𝜙
′

−
𝜆𝑢𝑣

√2
�̅�𝐿𝑢𝑅 + h.c. + 𝒪(3). 

Thus, the mass is 𝑚𝑢 = 𝜆𝑢𝑣/√2.  

HOW SYMMETRY BREAKING SOLVED THE PROBLEM: 

We began this section by stating that usual fermion mass terms 

do not respect SU(2) × U(1)𝑌 symmetry, with U(1) charge 𝑌. We 

solved this problem by writing mass terms using the scalar field 

𝜙 (>19.6.1). However, after symmetry breaking, the SU(2) ×

U(1)𝑌 symmetry has been broken, and is therefore no longer 

apparent. After all, after symmetry breaking, our mass terms look 

almost the same as the forbidden mass terms proposed in the 

beginning.  

Note, however, that after symmetry breaking all terms are 

symmetric under U(1)𝑄 with the U(1) charge being the electrical 

charge 𝑄. In this sense, the theory has the symmetry breaking 

pattern 

SU(2) × U(1)𝑌 → U(1)𝑄 . 

Following our considerations from section 18.2, the number of 

symmetries/generators are 

(22 − 1) + 12 → 12          ⟺           3 + 1 → 1. 

Thereby, three symmetries have been broken, corresponding to 

three massless Goldstone bosons; they are eaten by three 

massive gauge bosons. One symmetry remains, hence there is 

one massless gauge boson, the photon. 

 
 
 
 
 
 
 
 
 

19.7 The Higgs Boson 
THE MASS OF THE HIGGS BOSON: 

Consider the Lagrangian 

ℒ = |𝐷𝜇𝜙|
2
+ 𝜇2𝜙†𝜙 − 𝜆(𝜙†𝜙)2 

and let us write the field 𝜙(𝑥) as (>19.7.1) 

𝜙(𝑥) = 𝑈(𝑥)
1

√2
(

0
𝑣 + ℎ(𝑥)

) ,          𝑣 =
𝜇

√𝜆
. 

Here, 𝑈(𝑥) ∈ SU(2) and ℎ(𝑥) ∈ ℝ. This parameterization does 

not lack any generality. We can perform a gauge transformation 

𝜙 → 𝑈†𝜙, which leaves the Lagrangian invariant. 𝑣 is the 

vacuum expectation value, the minimum of the potential terms 

of ℒ. We find, that 

𝜇2𝜙†𝜙 − 𝜆(𝜙†𝜙)2 = −
𝑚ℎ
2

2
ℎ2 −

𝑚ℎ

√2
√𝜆ℎ3 −

𝜆

4
ℎ4 

with the Higgs boson mass 𝑚ℎ = √2𝜇 = √2𝜆𝑣.  

COUPLING TO GAUGE BOSONS: 

When we plugged in 𝜙 = 𝜙0 + 𝜙
′ into |𝐷𝜇𝜙|

2
 in 19.4, we did not 

consider terms containing 𝜙′ (they where 𝒪((fields)3)). Let’s 

now investigate what these terms give us for our present case of 

𝜙′(𝑥) = (0, ℎ(𝑥))/√2. What we find is (19.7.2) 

|𝐷𝜇𝜙|
2
= ⋯+ (𝑚𝑊

2 𝑊𝜇
−𝑊+𝜇 +

𝑚𝑍
2

2
(𝑍𝜇

0)
2
) ⋅ (1 +

ℎ

𝑣
)
2

, 

where the “⋯” stand for the terms of the type of the first to 

terms in this expansion in section 19.3.  

COUPLING TO FERMIONS: 

Similarly, the fermion mass terms from 19.6 become (>19.7.3) 

−𝑚𝑓𝑓�̅�𝑓𝑅 (1 +
ℎ

𝑣
) + h.c.,          for          𝑓 = 𝑒, 𝑢, 𝑑. 

PROPORTIONALITY TO THE MASSES: 

Note that all the couplings of the Higgs boson to gauge bosons or 

fermions are proportional to the masses of those particles. Thus, 

the particles that a most easily made in the laboratory have 

weaker couplings to the Higgs boson. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19.8 Generalization to Three Generations 
MASS TERMS OF SEVERAL QUARK GENERATIONS: 

If we consider all three quark generations, we should promote 

𝑢𝑋 and 𝑑𝑋 with 𝑋 = 𝐿, 𝑅 from section 18.6 to vectors 

𝓊 ≔ (𝑢, 𝑐, 𝑡),     𝒹 = (𝑑, 𝑠, 𝑏)       ⟹        𝑞𝐿 → 𝓆𝐿 = (
𝓊𝐿
𝒹𝐿
). 

With 𝜙 = (0, 𝑋) = (0, 𝑣 + ℎ)/√2, a general mass term of the 

down-type quarks then reads (>19.8.1) 

−(�̅�𝐿 ⋅ 𝜙)𝜆𝒹𝒹𝑅 = −𝑋 𝒹̅𝐿
𝑖 𝜆𝒹
𝑖𝑗
𝒹𝑅
𝑗
   →    − (1 +

ℎ

𝑣
)∑𝑚𝒹

𝑖 𝒹̅𝐿
𝑖𝒹𝑅

𝑖

𝑖

. 

Here, 𝜆𝒹
𝑖𝑗

 can be a completely arbitrary matrix. In (>19.8.1), we 

get to the expression on the right-hand side by the basis change 

𝒹𝑅 → 𝑅𝒹𝒹𝑅
𝒹𝐿 → 𝑆𝒹𝒹𝐿

,     where     
𝜆𝒹
†𝜆𝒹 = 𝑅𝒹𝐷𝒹

2𝑅𝒹
†

𝜆𝒹𝜆𝒹
† = 𝑆𝒹𝐷𝒹

2𝑆𝒹
† . 

Here, 𝐷𝒹
2 is a diagonal matrix and we identified 𝑚𝒹

𝑖 = 𝐷𝒹
𝑖𝑖𝑣/√2. In 

the same way we find for the up-type quarks 

−𝜖𝑎𝑏�̅�𝐿
𝑎𝜙𝑏

†𝜆𝓊𝓊𝑅 = −𝑋 �̅�𝐿𝜆𝓊𝓊𝑅   →    − (1 +
ℎ

𝑣
)∑𝑚𝓊

𝑖 �̅�𝐿
𝑖 𝓊𝑅

𝑖

𝑖

. 

CABIBBO-KOBAYASHI-MASKAWA MIXING: 

The basis change of 𝒹𝑅,𝐿 and 𝓊𝑅,𝐿 above does not affect terms 

where 𝒹𝑅 etc. appear pairwise, since the matrices 𝑅𝒹,𝓊, 𝑆𝒹,𝓊 are 

unitary. Thus, a kinetic term is, for example, invariant: 

𝒹̅𝐿𝜕𝒹𝐿   →    𝒹̅𝐿𝑅𝒹
†𝜕𝑅𝒹𝒹𝐿 = 𝒹̅𝐿𝜕𝒹𝐿 . 

For the same reason, also the currents 𝐽𝐸𝑀
𝜇

 and 𝐽𝑍
𝜇

 from 19.5 are 

invariant. Not so the currents 𝐽𝑊
±𝜇

, however: 

𝐽𝑊
+𝜇
= −

1

√2
�̅�𝐿𝛾

𝜇𝒹𝐿    →    −
1

√2
�̅�𝐿𝛾

𝜇 (𝑆𝓊
†𝑆𝒹)⏟    
=𝑉

𝒹𝐿 , 

𝐽𝑊
−𝜇
= −

1

√2
𝒹̅𝐿𝛾

𝜇𝓊𝐿    →    −
1

√2
𝒹̅𝐿𝛾

𝜇 (𝑆𝒹
†𝑆𝓊)⏟    
=𝑉†

𝓊𝐿 . 

We define the CKM matrix as 

𝑉 ≔ 𝑆𝓊
†𝑆𝒹          ⟹           𝑉𝑉† = 1     (unitary). 

2D CKM MATRIX: 

Consider the case of two quark generations, that is 𝓊 = (𝑢, 𝑐) 

and 𝒹 = (𝑑, 𝑠). By adjusting the phases of the fields 𝑢, 𝑐, 𝑑, 𝑠 we 

can absorb three of the four parameters of 𝑉 (>19.8.2) and we 

can give 𝑉 just in terms of the Cabibbo angle 𝜃𝑐: 

𝑉 = (
cos 𝜃𝑐 sin 𝜃𝑐
− sin 𝜃𝑐 cos 𝜃𝑐

). 

The current 𝐽𝑊
+𝜇

 can then be expanded as 

−√2 𝐽𝑊
+𝜇
= �̅�𝐿𝛾

𝜇𝑉𝒹𝐿
= cos 𝜃𝑐 (�̅�𝐿𝛾

𝜇𝑑𝐿 + 𝑐�̅�𝛾
𝜇𝑠𝐿) + sin 𝜃𝑐 (�̅�𝐿𝛾

𝜇𝑠𝐿 − 𝑐�̅�𝛾
𝜇𝑑𝐿). 

From measurements, we know the angle 𝜃𝑐 ≈ 13.02°. Thus, 

there is a small probability ∼ sin 𝜃𝑐  for vertices that convert 

quarks across generations.  

3D CKM MARTIX: 

Similarly, for all three quark generations, 𝑉 is a 3 × 3 unitary 

matrix with nine parameters, three of which are rotation angles 

of an O(3) rotation and six of which are phases. One only can 

remove five of the phases by absorbing them into the fields, thus 

one phase is left and 𝑉 is complex. This complex phase is the 

only point in the theory, where 𝐶𝑃 is violated.  

THREE GENERATIONS OF LEPTONS: 

For three generations of leptons, we promote the quantities 

from 19.6 as 𝑒 → ℯ = (𝑒, 𝜇, 𝜏) and 𝜈 → 𝓃 = (𝜈𝑒 , 𝜈𝜇 , 𝜈𝜏) as well as 

𝐸𝐿 → ℰ𝐿 = (𝓃𝐿 , ℯ𝐿). By the same steps as for the quarks above, 

this yields the mass term (>19.8.3) 

−(ℰ�̅� ⋅ 𝜙)𝜆ℯℯ𝑅   →   − (1 +
ℎ

𝑣
)∑𝑚ℯ

𝑖 ℯ̅𝐿
𝑖ℯ𝑅
𝑖

𝑖

, 

where we needed to change the basis of the fields like ℯ𝑅 → 𝑅ℯℯ𝑅 

and ℯ𝐿 → 𝑆ℯℯ𝐿 . Changing also 𝓃𝐿 → 𝑆ℯ𝓃𝐿, the matrices 𝑅ℯ and 𝑆ℯ  

completely disappear from the theory (no generation mixing). 
 

19.9 Overview: The Electroweak Lagrangian 
Let us denote the complete electroweak Lagrangian (without 

QCD) as (>19.9.1) 

ℒ = −
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎

𝜇𝜈
+ �̅�𝑖𝐷𝜓 + ℒHiggs + ℒYuk. 

GAUGE BOSON TERMS: 

In terms of the gauge boson mass eigenstate 𝑊±, 𝑍, 𝐴, we find 

after a long computation (>19.9.2) 

−
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎

𝜇𝜈
= −

1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 −
1

4
𝑍𝜇𝜈𝑍

𝜇𝜈 −
1

2
𝑊𝜇𝜈

−𝑊+𝜇𝜈  

          + 𝑖𝑒 (𝐹𝜇𝜈𝑊
+𝜇𝑊−𝜈 − 𝐴𝜈(𝑊𝜇𝜈

−𝑊+𝜇 −𝑊𝜇𝜈
+𝑊−𝜇)) 

          + 𝑖𝑒 cot 𝜃𝑤 (𝑍𝜇𝜈𝑊
+𝜇𝑊−𝜈 − 𝑍𝜈(𝑊𝜇𝜈

−𝑊+𝜇 −𝑊𝜇𝜈
+𝑊−𝜇)) 

          +
𝑒2

2 sin2 𝜃𝑤
(𝑊𝜇

+𝑊+𝜇𝑊𝜈
−𝑊−𝜈 −𝑊𝜇

+𝑊−𝜇𝑊𝜈
+𝑊−𝜈) 

          + 𝑒2(𝐴𝜇𝐴
𝜈𝑊𝜈

−𝑊+𝜇 − 𝐴𝜈𝐴
𝜈𝑊𝜇

−𝑊+𝜇) 

          + 𝑒2 cot2 𝜃𝑤 (𝑍𝜇𝑍
𝜈𝑊𝜈

−𝑊+𝜇 − 𝑍𝜈𝑍
𝜈𝑊𝜇

−𝑊+𝜇) 

          + 𝑒2 cot 𝜃𝑤 (𝐴
𝜇𝑍𝜈(𝑊𝜈

−𝑊𝜇
+ +𝑊𝜈

+𝑊𝜇
−) − 2𝑍𝜈𝐴

𝜈𝑊𝜇
−𝑊+𝜇), 

where 

𝐹𝜇𝜈 ≔ 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 ,   𝑍𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇,   𝑊𝜇𝜈
± ≔ 𝜕𝜇𝑊𝜈

± − 𝜕𝜈𝑊𝜇
±. 

Note that this gauge boson term includes the purely kinetic 

terms as well as interaction terms producing various possible 

vertices among the gauge bosons. 

FERMION KINETIC AND INTERACTION TERMS: 

We can give the fermion terms as (>19.9.3) 

          �̅�𝑖𝐷𝜓 = ℰ�̅�𝑖𝜕ℰ𝐿 + ℯ̅𝑅𝑖𝜕ℯ𝑅 + �̅�𝑖𝜕𝓆 

     + 𝑔(𝑊𝜇
+𝐽𝑊
+𝜇
+𝑊𝜇

−𝐽𝑊
−𝜇
+ 𝑍𝜇𝐽𝑍

𝜇
) + 𝑒𝐴𝜇𝐽𝐸𝑀

𝜇
. 

The currents are given by 

𝐽𝑊
+𝜇
=
−1

√2
(�̅�𝐿𝛾

𝜇ℯ𝐿 + �̅�𝐿𝑉𝛾
𝜇𝒹𝐿),    𝐽𝑊

−𝜇
=
−1

√2
(ℯ̅𝐿𝛾

𝜇𝓋𝐿 + 𝒹̅𝐿𝑉
†𝓊𝐿), 

𝐽𝑍
𝜇
=

1

cos 𝜃𝑤
(
1

2
�̅�𝐿𝛾

𝜇𝓋𝐿 + (sin
2 𝜃𝑤 −

1

2
) ℯ̅𝐿𝛾

𝜇ℯ𝐿 + sin
2 𝜃𝑤 ℯ̅𝑅𝛾

𝜇ℯ𝑅

+              + (
1

2
−
2

3
sin2 𝜃𝑤) �̅�𝐿𝛾

𝜇𝓊𝐿 + (
1

3
sin2 𝜃𝑤 −

1

2
)𝒹̅𝐿𝛾

𝜇𝒹𝐿

+              −
2

3
sin2 𝜃𝑤 �̅�𝑅𝛾

𝜇𝓊𝑅 +
1

3
sin2 𝜃𝑤 𝒹̅𝑅𝛾

𝜇𝒹𝑅). 

𝐽𝐸𝑀
𝜇
= −ℯ̅𝛾𝜇ℯ +

2

3
�̅�𝛾𝜇𝓊 −

1

3
𝒹̅𝛾𝜇𝒹. 

Here, we use the notation 

ℰ ≔ (
𝓋
ℯ
) ≔ (

(𝜈𝑒 , 𝜈𝜇 , 𝜈𝜏)

(𝑒, 𝜇, 𝜏)
) ,          𝓆 ≔ (

𝓊
𝒹
) ≔ (

(𝑢, 𝑐, 𝑡)

(𝑑, 𝑠, 𝑏)
). 

THE HIGGS SECTOR: 

The Higgs sector is given by 

ℒHiggs = |𝐷𝜇𝜙|
2
− 𝑉(𝜙),          𝑉(𝜙) = −𝜇2𝜙†𝜙 + 𝜆(𝜙†𝜙)2, 

where we found that (>19.9.4) 

   |𝐷𝜇𝜙|
2
→
SB
|𝜕𝜇𝜙|

2
+ HM + (𝑚𝑊

2 𝑊𝜇
−𝑊+𝜇 +

𝑚𝑍
2

2
𝑍𝜇𝑍

𝜇) ⋅ (1 +
ℎ

𝑣
)
2

, 

   𝑉(𝜙) →
SB 𝑚ℎ

2

2
ℎ2 +

𝑚ℎ√𝜆

√2
ℎ3 +

𝜆

4
ℎ4. 

“HM” are the Higgs mechanism terms that ensure transverse 

gauge boson propagators. “SB” means symmetry braking”. Thus, 

ℒHiggs contains the Higgs boson kinetic and mass term, the gauge 

boson mass terms as well as interaction terms between the 

Higgs boson and the gauge bosons.  

THE YUKAWA SECTOR (FERMION MASS TERMS): 

The fermion mass terms are given by (>19.9.5) 

ℒYuk = −(ℰ�̅� ⋅ 𝜙)𝜆ℯℯ𝑅 − (�̅�𝐿
′ ⋅ 𝜙)𝜆𝒹𝒹𝑅

′ − 𝜖𝑎𝑏�̅�𝐿
′𝑎𝜙𝑏𝜆𝒹𝓊𝑅

′ + h.c. 

         →
SB
 − (1 +

ℎ

𝑣
)∑(𝑚𝒹

𝑖 𝒹̅𝐿
𝑖𝒹𝑅

𝑖 +𝑚𝓊
𝑖 �̅�𝐿

𝑖 𝓊𝑅
𝑖 +𝑚ℯ

𝑖 ℯ̅𝐿
𝑖ℯ𝑅
𝑖 )

𝑖

+ h.c. 

GAUGE TRANSFORMATION CHARGES (>19.9.6): 

ℰ𝐿 ℯ𝑅 𝓆𝐿 𝒹𝑅 𝓊𝑅 𝜙

SU(2):     𝑡𝑎 = 𝜎𝑎/2 0 𝜎𝑎/2 0 0 𝜎𝑎/2

U(1):        𝑌 = −1/2 −1 1/6 −1/3 2/3 1/2

 



20 Quantization of GWS Theory 
 

20.1 R-Xi Gauge – Faddeev-Popov Lagrangian 
FUNCTIONAL QUANTIZATION: 

We want to use the Faddeev-Popov method from 15.3 and 18.2 

to quantize the theory. This method requires the choice of a 

gauge condition. For spontaneously broken theories, the 

standard choice is the so-called 𝑅𝜉  gauge 𝐺𝑎 = 𝐻𝑎 − 𝜔𝑎(𝑥) = 0 

for arbitrary functions 𝜔𝑎  and  

𝐻𝑎(𝐴, 𝜙′) ≔
1

√𝜉
(𝜕𝜇𝐴𝜇

𝑎 + 𝜉𝑔𝐹𝑖
𝑎𝜙𝑖

′),          𝐹𝑖
𝑎 ≔ 𝑇𝑖𝑗

𝑎𝜙0𝑗 . 

Note from 19.3 that 𝑚𝑎𝑏
2 = 𝑔2𝐹𝑎𝐹𝑏 . By the Faddeev-Popov 

procedure, this procedure yields effectively to the following 

additional gauge fixing term to the Lagrangian (>20.1.1): 

−
1

2
𝐻𝑎𝐻

𝑎 =
1

2𝜉
(𝐴𝜇

𝑎𝜕𝜇𝜕𝜈𝐴𝑎
𝜈) − 𝑔(𝐹𝑖𝑎𝜙𝑖

′)(𝜕𝜇𝐴
𝑎𝜇) −

1

2
𝜉𝑔2(𝐹𝑖

𝑎𝜙𝑖
′)2. 

KINETIC TERMS OF GAUGE AND GOLDSTONE BOSON: 

Using the Lagrangian 

ℒ = −
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎

𝜇𝜈
+
1

2
(𝐷𝜇𝜙)

2
− 𝑉(𝜙), 

some terms between ℒ and −𝐻𝑎𝐻
𝑎/2 cancel and thus (>20.1.2) 

ℒ −
1

2
𝐻𝑎𝐻

𝑎

= −
1

2
𝐴𝜇
𝑎 ((−𝜂𝜇𝜈☐+ (1 −

1

𝜉
) 𝜕𝜇𝜕𝜈) 𝛿𝑎𝑏 −𝑚𝑎𝑏

2 𝜂𝜇𝜈)𝐴𝜈
𝑏

+ +
1

2
(𝜕𝜇𝜙

′)
2
−
1

2
𝑀𝑖𝑗
2𝜙𝑖

′𝜙𝑗
′ −

1

2
𝜉𝑔2(𝐹𝑖

𝑎𝜙𝑖
′)2 + 𝒪((fields)3). 

CONTRIBUTIONS OF THE GHOSTS: 

Furthermore, the effective Lagrangian receives the following 

contribution from ghost fields (>20.1.3) 

�̅�(−𝜕𝜇𝐷𝑎𝑏
𝜇
− 𝜉𝑔2𝐹𝑖

𝑎𝑇𝑖𝑗
𝑏(𝜙0 + 𝜙

′)𝑗)𝜗. 
 

20.2 R-Xi Gauge – Propagators 
The terms of the Faddeev-Popov Lagrangian from 20.1 can be 

converted into Feynman propagators. 

GAUGE BOSON PROPAGATOR: 

The 𝒪(𝐴2)-term of the gauge boson yields the propagator 

(>20.2.1) 

�̂�𝐹,𝑎𝑏
𝜇𝜈

= (
−𝑖

𝑘2 − �̃�𝐴
2 (𝜂

𝜇𝜈 −
𝑘𝜇𝑘𝜈

𝑘2 − 𝜉�̃�𝐴
2
(1 − 𝜉)))

𝑎𝑏

. 

Here, �̃�𝐴
2 is the matrix with components 𝑚𝑎𝑏

2 . 

SCALAR FIELD PROPAGATOR: 

The propagator of the scalar fields (containing the Higgs boson 

and the Goldstone bosons) reads (>20.2.2) 

𝐷𝐹
𝑖𝑗
= (

𝑖

𝑘2 − 𝜉𝑔2𝐹𝑎𝐹𝑎 −𝑀2
)
𝑖𝑗

. 

GHOST PROPAGATOR: 

The ghost propagator reads 

�̌�𝐹,𝑎𝑏 = (
𝑖

𝑘2 − 𝜉�̃�𝐴
2)

𝑎𝑏

. 

 
 
 
 
 
 
 
 
 

20.3 R-Xi Gauge – Propagators for GWS Theory 
GWS theory is a special case of the general derivation of 20.1 and 

20.2, for which 𝐹𝑖
𝑎 takes specific values. Thereby we find the 

following propagators (>20.3.1) 

gauge boson:          �̂�𝐹
𝜇𝜈
=

−𝑖

𝑘2 −𝑚𝑋
2 (𝜂

𝜇𝜈 −
𝑘𝜇𝑘𝜈

𝑘2 − 𝜉𝑚𝑋
2
(1 − 𝜉)), 

ghosts:          �̆�𝐹 =
𝑖

𝑘2 − 𝜉𝑚𝑋
2 .                                        

𝑚𝑋 = 𝑚𝑊 , 𝑚𝑍, 𝑚𝐴 is the mass of the respective gauge boson 

(with photon mass 𝑚𝐴 = 0). That is, each gauge boson comes 

with its own ghost. 

Further we have 

Goldstone boson:          𝐷𝐹 =
𝑖

𝑘2 − 𝜉𝑚𝑋
2 ,       

Higgs boson:          𝐷𝐹 =
𝑖

𝑘2 −𝑚ℎ
2 . 

NAMES OF DIFFERENT CHOICES FOR 𝝃: 

The following choices for 𝜉 have been given names: 
typically used for:              

Landau gauge:                    𝜉 → 0 technical proofs                  
Feynman-t'-Hooft gauge: 𝜉 = 1  loop calculations                

Yennie gauge:                     𝜉 = 3  specific loop calculations
Unitary gauge:                   𝜉 → ∞ tree level calculations      
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